Advertisements
Advertisements
Question
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
Solution
\[I = \int_0^1 ( \cos^{- 1} x )^2 d x\]
\[\text{let }co s^{- 1} x = \theta\]
\[ \Rightarrow x = \cos\theta\]
\[ \Rightarrow dx = - \sin\theta d\theta\]
\[\text{when }x = 0, \theta = \frac{\pi}{2}\text{ and when }x = 1, \theta = 0\]
\[\text{Therefore, }I = \int_\frac{\pi}{2}^0 \theta^2 ( - \sin\theta) d \theta \]
\[I = - \int_\frac{\pi}{2}^0 \theta^2 (sin\theta) d \theta\]
\[I = \int_0^\frac{\pi}{2} \theta^2 (sin\theta) d \theta\]
\[I = \left[ \theta^2 ( - cos\theta) \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2\theta \int_0^\frac{\pi}{2} \sin\theta d \theta\]
\[I = \left[ \theta^2 ( - \cos\theta) \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2\theta( - \cos\theta) d \theta\]
\[= [ - \theta^2 \cos\theta ]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} 2\theta(\cos\theta)d\theta\]
\[ = [ - \theta^2 cos\theta ]_0^\frac{\pi}{2} + 2[\theta\sin\theta - \int_0^\frac{\pi}{2} \sin\theta d\theta]\]
\[ = [ - \theta^2 cos\theta ]_0^\frac{\pi}{2} + 2[\theta sin\theta + \cos\theta ]_0^\frac{\pi}{2} \]
\[I = 2\left[\left(\frac{\pi}{2} + 0\right) - 1\right] \]
\[I = \pi - 2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`