English

1 ∫ 0 ( Cos − 1 X ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

Sum

Solution

\[I = \int_0^1 ( \cos^{- 1} x )^2 d x\]

\[\text{let }co s^{- 1} x = \theta\]

\[ \Rightarrow x = \cos\theta\]

\[ \Rightarrow dx = - \sin\theta d\theta\]

\[\text{when }x = 0, \theta = \frac{\pi}{2}\text{ and when }x = 1, \theta = 0\]

\[\text{Therefore, }I = \int_\frac{\pi}{2}^0 \theta^2 ( - \sin\theta) d \theta \]

\[I = - \int_\frac{\pi}{2}^0 \theta^2 (sin\theta) d \theta\]

\[I = \int_0^\frac{\pi}{2} \theta^2 (sin\theta) d \theta\]

\[I = \left[ \theta^2 ( - cos\theta) \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2\theta \int_0^\frac{\pi}{2} \sin\theta d \theta\]

\[I = \left[ \theta^2 ( - \cos\theta) \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2\theta( - \cos\theta) d \theta\]

\[= [ - \theta^2 \cos\theta ]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} 2\theta(\cos\theta)d\theta\]

\[ = [ - \theta^2 cos\theta ]_0^\frac{\pi}{2} + 2[\theta\sin\theta - \int_0^\frac{\pi}{2} \sin\theta d\theta]\]

\[ = [ - \theta^2 cos\theta ]_0^\frac{\pi}{2} + 2[\theta sin\theta + \cos\theta ]_0^\frac{\pi}{2} \]

\[I = 2\left[\left(\frac{\pi}{2} + 0\right) - 1\right] \]

\[I = \pi - 2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 25 | Page 121

RELATED QUESTIONS

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×