Advertisements
Advertisements
Question
Evaluate the following definite integrals:
Solution
\[ \Rightarrow I = \left( 0 - 0 \right) + 2 \int_0^\frac{\pi}{2} x\cos x\ dx ..............\left( \cos\frac{\pi}{2} = 0 \right)\]
\[ \Rightarrow I = 2\left( \frac{\pi}{2}\sin\frac{\pi}{2} - 0 \right) - 2 \int_0^\frac{\pi}{2} \sin\ x\ dx\]
\[ \Rightarrow I = 2\left( \frac{\pi}{2} - 0 \right) - 2\left( - \cos\ x \right) |_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \pi + 2\left( \cos\frac{\pi}{2} - \cos0 \right)\]
\[ \Rightarrow I = \pi + 2\left( 0 - 1 \right)\]
\[ \Rightarrow I = \pi - 2\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`