Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals:
\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]
योग
उत्तर
\[\text{Let }I = \int_0^\frac{\pi}{2} x^2 \sin x\ dx\]
Applying integration by parts, we have
\[I = x^2 \left( - \cos x \right) |_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x\left( - \cos x \right)dx\]
\[ \Rightarrow I = \left( 0 - 0 \right) + 2 \int_0^\frac{\pi}{2} x\cos x\ dx ..............\left( \cos\frac{\pi}{2} = 0 \right)\]
\[ \Rightarrow I = \left( 0 - 0 \right) + 2 \int_0^\frac{\pi}{2} x\cos x\ dx ..............\left( \cos\frac{\pi}{2} = 0 \right)\]
Again applying integration by parts, we have
\[I = 0 + 2\left[ x\sin x |_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 1 \times \sin\ x\ dx \right]\]
\[ \Rightarrow I = 2\left( \frac{\pi}{2}\sin\frac{\pi}{2} - 0 \right) - 2 \int_0^\frac{\pi}{2} \sin\ x\ dx\]
\[ \Rightarrow I = 2\left( \frac{\pi}{2} - 0 \right) - 2\left( - \cos\ x \right) |_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \pi + 2\left( \cos\frac{\pi}{2} - \cos0 \right)\]
\[ \Rightarrow I = \pi + 2\left( 0 - 1 \right)\]
\[ \Rightarrow I = \pi - 2\]
\[ \Rightarrow I = 2\left( \frac{\pi}{2}\sin\frac{\pi}{2} - 0 \right) - 2 \int_0^\frac{\pi}{2} \sin\ x\ dx\]
\[ \Rightarrow I = 2\left( \frac{\pi}{2} - 0 \right) - 2\left( - \cos\ x \right) |_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \pi + 2\left( \cos\frac{\pi}{2} - \cos0 \right)\]
\[ \Rightarrow I = \pi + 2\left( 0 - 1 \right)\]
\[ \Rightarrow I = \pi - 2\]
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]
\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]
\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]
\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]
\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]
\[\int_0^1 x\log\left( 1 + 2x \right)dx\]
\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]
\[\int\limits_0^1 x e^{x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]
\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]
\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]
\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]
\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]
\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]
\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]
Prove that:
\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]
\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]
\[\int\limits_0^{\pi/2} \cos x\ dx\]
\[\int\limits_0^5 \left( x + 1 \right) dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]
Evaluate each of the following integral:
\[\int_e^{e^2} \frac{1}{x\log x}dx\]
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\] is equal to
\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^4 x dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.