हिंदी

4 ∫ 1 F ( X ) D X , W H E R E F ( X ) = ( 4 X + 3 , I F 1 ≤ X ≤ 2 3 X + 5 , I F 2 ≤ X ≤ 4 ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]
योग

उत्तर

We have,

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \frac{\pi}{2} \\ 1 & , & \frac{\pi}{2} \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[I = \int_0^9 f\left( x \right) d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} f\left( x \right) d x + \int_\frac{\pi}{2}^3 f\left( x \right) d x + \int_3^9 f\left( x \right) d x ....................\left[\text{Additive property} \right]\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \sin x d x + \int_\frac{\pi}{2}^3 1 d x + \int_3^9 e^{x - 3} d x\]
\[ \Rightarrow I = \left[ - \cos x \right]_0^\frac{\pi}{2} + \left[ x \right]_\frac{\pi}{2}^3 + \left[ e^{x - 3} \right]_3^9 \]
\[ \Rightarrow I = 0 + 1 + 3 - \frac{\pi}{2} + e^6 - e^0 \]
\[ \Rightarrow I = 3 - \frac{\pi}{2} + e^6\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.3 | Q 1.2 | पृष्ठ ५५

संबंधित प्रश्न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following:

Γ(4)


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×