Advertisements
Advertisements
प्रश्न
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
विकल्प
- \[\frac{1}{3 \ln x}\]
- \[\frac{1}{3 \ln x} - \frac{1}{2 \ln x}\]
(ln x)−1 x (x − 1)
- \[\frac{3 x^2}{\ln x}\]
उत्तर
(ln x)−1 x (x − 1)
Using Newton Leibnitz formula
\[f' (x) = \frac{1}{\log_e x^3}(3 x^2 ) - \frac{1}{\log_e x^2}(2x) \]
\[= \frac{3 x^2}{3\ln x}- \frac{2x}{2\ln x} \]
\[= \frac{x^2}{\ln x} - \frac{x}{\ln x} \]
\[= \frac{1}{\ln x}x(x - 1) \]
\[= {(\ln x)}^{- 1} x(x - 1)\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Solve each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Γ(1) is
Choose the correct alternative:
If n > 0, then Γ(n) is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`