Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi 5 \left( 5 - 4\cos \theta \right)^\frac{1}{4} \sin \theta\ d \theta . \]
\[Let\left( 5 - 4 \cos \theta \right) = t . Then, 4 \sin \theta\ d\theta = dt\]
\[When\ \theta = 0, t = 1\ and\ \theta = \pi, t = 9\]
\[ \therefore I = \frac{5}{4} \int_1^9 t^\frac{1}{4} dt\]
\[ \Rightarrow I = \frac{5}{4} \left[ \frac{4 t^\frac{5}{4}}{5} \right]_1^9 \]
\[ \Rightarrow I = \left( 9\sqrt{3} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following:
`Γ (9/2)`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.