हिंदी

Π / 2 ∫ 0 X Sin X Cos X Sin 4 X + Cos 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
योग

उत्तर

\[Let I = \int_0^\frac{\pi}{2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} d x . . . (i)\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( \frac{\pi}{2} - x \right) \sin\left( \frac{\pi}{2} - x \right) \cos\left( \frac{\pi}{2} - x \right)}{\sin^4 \left( \frac{\pi}{2} - x \right) + \cos^4 \left( \frac{\pi}{2} - x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( \frac{\pi}{2} - x \right)\cos x \sin x}{\cos^4 x + \sin^4 x} dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( \frac{\pi}{2} - x \right)\sin x \cos x}{\sin^4 x + \cos^4 x} dx . . . (ii)\]
\[\text{Adding (i) and (ii) we get}\]
\[2I = \int_0^\frac{\pi}{2} \left( x + \frac{\pi}{2} - x \right)\frac{\sin x \cos nx}{\sin^4 x + \cos^4 x} d x\]
\[ = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} d x\]
\[\text{Let} \sin^2 x = t, \text{Then 2 sin x cosx}\ dx = dt\]
\[\text{When} x = 0, t = 0, x = \frac{\pi}{2}, t = 1\]
Therefore
\[2I = \frac{\pi}{4} \int_0^1 \frac{dt}{t^2 + \left( 1 - t \right)^2}\]
\[ = \frac{\pi}{8} \int_0^1 \frac{dt}{\left( t - \frac{1}{2} \right)^2 + \frac{1}{4}}\]
\[ = \frac{\pi}{8} \times 2 \left[ ta n^{- 1} \left( 2t - 1 \right) \right]_0^1 \]
\[ = \frac{\pi}{4}\left( \frac{\pi}{4} + \frac{\pi}{4} \right)\]
\[Hence\ I = \frac{\pi^2}{16}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 22 | पृष्ठ ९५

संबंधित प्रश्न

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×