हिंदी

∫x3x+1 is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int x^3/(x + 1)` is equal to ______.

विकल्प

  • `x + x^2/2 + x^3/3 - log|1 - x| + "C"`

  • `x + x^2/2 - x^3/3 - log|1 - x| + "C"`

  • `x - x^2/2 - x^3/3 - log|1 + x| + "C"`

  • `x - x^2/2 + x^3/3 - log|1 + x| + "C"`

MCQ
रिक्त स्थान भरें

उत्तर

`int x^3/(x + 1)` is equal to `x - x^2/2 + x^3/3 - log|1 + x| + "C"`.

Explanation:

I = `int x^3/(x + 1)`

= `int (x^3 + 1 - 1)/(x + 1) "d"x`

= `int (x^3 + 1)/(x + 1) "d"x - int 1/(x + 1) "d"x`

= `int (x^2 - x + 1)"d"x - int 1/(x + 1) "d"x`

= `x^3/3 - x^2/2 + x - log|x + 1| + "C"`

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 54 | पृष्ठ १६८

संबंधित प्रश्न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^4 x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×