Advertisements
Advertisements
प्रश्न
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
विकल्प
log |1 + cosx| + C
log |x + sinx| + C
`x - tan x/2 + "C"`
`x.tan x/2 + "C"`
उत्तर
`int (x + sinx)/(1 + cosx) "d"x` is equal to `x.tan x/2 + "C"`.
Explanation:
I = `int (x + sinx)/(1 + cosx) "d"x`
= `int x/(1 + cos x) "d"x + int (sinx)/(1 + cosx) "d"x`
= `int x/(2cos^2 x/2) "d"x + int (2sin x/2 cos x/2)/(2cos^2 x/2) "d"x`
= `int x sec^2 x/2 "d"x + int tan x/2 "d"x`
= `1/2 [x*2 tan x/2 - int 2 tan x/2 "d"x] + int tan x/2 "d"x`
= `x * tan x/2 + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
sin−1 (cos x)
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Find `int x^2tan^-1x"d"x`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int sinx/(3 + 4cos^2x) "d"x` = ______.
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is