Advertisements
Advertisements
प्रश्न
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
उत्तर
Let `"I" = int cos("x + a")/sin("x +b")"dx".` Then
`"I" = cos("x"+"b"+"a" -"b")/sin("x+b")"dx"`
`"I" = int cos{("x+b")+ ("a"- "b")}/sin("x+b")"dx"`
`"I" = int (cos("x+b").cos("a"-"b")-sin("x+b").sin("a"-"b"))/sin("x+b")"dx"`
`"I" = int [cos("a"-"b") . cot ("x+b") - sin("a"-"b")]"dx"`
`"I" = cos("a"-"b") . log |sin("x + b")| - "x".sin("a" - "b")`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
sin−1 (cos x)
Find `int dx/(x^2 + 4x + 8)`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`int "dx"/(sin^2x cos^2x)` is equal to ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to