Advertisements
Advertisements
प्रश्न
Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1.
उत्तर
A =R − {2}, B = R − {1}
f: A → B is defined as `"f"("x") = ("x"-1)/("x"-2)`.
Let x, y ∈ A such that f (x) = f (y).
⇒ `("x"-1)/("x"-2) = ("y"-1)/("y"-2)`
⇒ ( x -1) (y - 2) = (x - 2) (y - 1)
⇒ xy - 2x - y + 2 = xy - x - 2y + 2
⇒ -2x - y = -x - 2y
⇒ 2x - x = 2y - y
⇒ x = y
∴ f is one-one.
Let y ∈B = R − {1}. Then, y ≠ 1.
The function f is onto if there exists x ∈A such that f(x) = y.
Now,
f (x) = y
⇒`("x"-1)/("x"-2) = "y"`
⇒ x - 1 = y (x - 2)
⇒ x (1 - y) = 1 - 2y
⇒ `"x" = (1-2"y")/(1-"y")∈ "A"` .........[y ≠ 1]
Thus, for any y ∈ B, there exists `"x" = (1-2"y")/(1-"y")` ∈ A such that
`"f"((1-2"y")/(1-"y")) =((1-2"y")/(1-"y")-1)/((1-2"y")/(1-"y") - 2) = (1-2"y"-1+"y")/(1-2"y"-2+2"y") = (-"y")/-1 = "y"`
Therefore, f is onto.
Hence, function f is one-one and onto.
`"f"^-1("x") = (1-2"x")/(1-"x")`
APPEARS IN
संबंधित प्रश्न
Show that the function f: R → R given by f(x) = x3 is injective.
Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.
Which of the following functions from A to B are one-one and onto?
f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {a, b, c}
Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2
Classify the following function as injection, surjection or bijection :
f : Q → Q, defined by f(x) = x3 + 1
Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : `f (x) = x/2`
Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.
Let f be any real function and let g be a function given by g(x) = 2x. Prove that gof = f + f.
if `f (x) = sqrt(1-x)` and g(x) = `log_e` x are two real functions, then describe functions fog and gof.
State with reason whether the following functions have inverse :
g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}
Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → B, g : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Which of the following graphs represents a one-one function?
Write the total number of one-one functions from set A = {1, 2, 3, 4} to set B = {a, b, c}.
If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.
The function
f : A → B defined by
f (x) = - x2 + 6x - 8 is a bijection if
Let f be an injective map with domain {x, y, z} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.
\[f\left( x \right) = 1, f\left( y \right) \neq 1, f\left( z \right) \neq 2 .\]
The value of
\[f^{- 1} \left( 1 \right)\] is
If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =
A function f from the set of natural numbers to the set of integers defined by
\[f\left( n \right)\begin{cases}\frac{n - 1}{2}, & \text{when n is odd} \\ - \frac{n}{2}, & \text{when n is even}\end{cases}\]
Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.
Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by \[f\left( x \right) = \frac{x - 2}{x - 3}, \forall x \in A\] Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)
Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}
Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto
Which of the following functions from Z into Z are bijections?
The number of bijective functions from set A to itself when A contains 106 elements is ____________.
Which of the following functions from Z into Z is bijective?
Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.
Answer the following questions using the above information.
- Let f: N → N be defined by f(x) = x2 is ____________.
If `f : R -> R^+ U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is
Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.