हिंदी

The Function F : a → B Defined by F (X) = - X2 + 6x - 8 is a Bijection If (A) a = (- ∞ , 3] and B = ( - ∞, 1 ] (B) a = [- 3 , ∞) and B = ( - ∞, 1 ] (C) a = (- ∞ , 3 - Mathematics

Advertisements
Advertisements

प्रश्न

The function 

f : A → B defined by 

f (x) = - x2 + 6x - 8 is a bijection if 

 

 

 

 

विकल्प

  • A = (- ∞ , 3] and B = ( - ∞, 1 ]

  •  A = [- 3 , ∞) and B = ( - ∞, 1 ]

  • A = (- ∞ , 3] and B = [ 1 ,∞)

  • A = [3 ,∞ ) and B = [ 1 ,∞ )

MCQ

उत्तर

 \[A = ( - \infty , 3] \text{and }B = ( - \infty , 1]\]

\[f\left( x \right) = - x^2 + 6x - 8 , \text{is a polynomial function}\]
\[\text{And the domain of polynomial function is real number} . \]
\[ \therefore x \in R\]

\[f(x) = - x^2 + 6x - 8\]
\[ = - \left( x^2 - 6x + 8 \right)\]
\[ = - \left( x^2 - 6x + 9 - 1 \right)\]
\[ = - \left( x - 3 \right)^2 + 1\]
\[\text{Maximum value of} - \left( x - 3 \right)^2 \text{woud be } 0\]
\[ \therefore \text{Maximum value of} - \left( x - 3 \right)^2 + 1 \text{woud be} 1\]
\[ \therefore f(x) \in ( - \infty , 1]\]

\[\text{We can see from the given graph that function is symmetrical about x = 3 & the given function is bijective .} \]
\[\text{So, x would be either} ( - \infty , 3 ] or [ 3, \infty )\]
\[\text{The correct option which satisfy A and B both is}: \]

\[A = ( - \infty , 3] \text{ and }B = ( - \infty , 1]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 6 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Check the injectivity and surjectivity of the following function:

f: → N given by f(x) = x3


Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 2), (b, 1), (c, 1)}


 Which of the following functions from A to B are one-one and onto ?  

f3 = {(ax), (bx), (cz), (dz)} ; A = {abcd,}, B = {xyz}. 


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


If f : R → R be the function defined by f(x) = 4x3 + 7, show that f is a bijection.


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 8 and g(x) = 3x3 + 1 .


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.


Let A = {x &epsis; R | −1 ≤ x ≤ 1} and let f : A → Ag : A → A be two functions defined by f(x) = x2 and g(x) = sin (π x/2). Show that g−1 exists but f−1 does not exist. Also, find g−1.


 If f : R → R be defined by f(x) = x4, write f−1 (1).

If f : C → C is defined by f(x) = (x − 2)3, write f−1 (−1).


Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f .   [NCERT EXEMPLAR]


Let A = {abcd} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]


Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


Let

\[f : R - \left\{ n \right\} \to R\]

\[f\left( x \right) = \frac{x - m}{x - n}, \text{where} \ m \neq n .\] Then,
 

\[f : Z \to Z\]  be given by

 ` f (x) = {(x/2, ", if  x is even" ) ,(0 , ", if  x  is  odd "):}`

Then,  f is


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


Let 
\[f : R \to R\]  be given by \[f\left( x \right) = x^2 - 3\] Then, \[f^{- 1}\] is given by 

 


If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1


Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Which of the following functions from Z into Z is bijective?


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.


Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as

f(k) = `{{:(k + 1, if k  "is odd"),(     k, if k  "is even"):}`.

Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.


For x ∈ R, x ≠ 0, let f0(x) = `1/(1 - x)` and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of `f_100(3) + f_1(2/3) + f_2(3/2)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×