हिंदी

The Range of the Function (A) {1, 2, 3, 4, 5} (B) {1, 2, 3, 4, 5, 6} (C) {1, 2, 3, 4} (D) {1, 2, 3} - Mathematics

Advertisements
Advertisements

प्रश्न

The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 

विकल्प

  • {1, 2, 3, 4, 5}

  • {1, 2, 3, 4, 5, 6}

  • {1, 2, 3, 4}

  • {1, 2, 3}

MCQ

उत्तर

We know that

\[7 - x > 0; x - 3 \geq 0 \text{ and }7 - x \geq x - 3\]
\[ \Rightarrow x < 7; x \geq 3 \text{ and }2x \leq 10\]
\[ \Rightarrow x < 7; x \geq 3 \text{ and }x \leq 5\]
\[So,x = \left\{ 3, 4, 5 \right\}\]
\[\text{ Range of }f\]
\[=\left\{\ {^ \left( 7 - 3 \right)}{}{P}_\left( 3 - 3 \right) , \ {^\left( 7 - 4 \right)}{}{P}_\left( 4 - 3 \right) , {^\left( 7 - 5 \right)}{}{P} \left( {}_{5 - 3} \right) \right\}\]
\[=\left\{ 4 P_0 , 3 P_1 , 2 P_2 \right\}\]
\[=\left\{ 1, 3, 2 \right\}\]
\[=\left\{ 1, 2, 3 \right\}\]

So, the answer is (d).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 11 | पृष्ठ ७६

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.


Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.


Let fR → R be the Signum Function defined as

f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

and gR → be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Suppose f1 and f2 are non-zero one-one functions from R to R. Is `f_1 / f^2` necessarily one - one? Justify your answer. Here,`f_1/f_2 : R → R   is   given   by   (f_1/f_2) (x) = (f_1(x))/(f_2 (x))  for all  x in R .`


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


Consider f : {1, 2, 3} → {abc} and g : {abc} → {apple, ball, cat} defined as f (1) = af (2) = bf (3) = cg (a) = apple, g (b) = ball and g (c) =  cat. Show that fg and gof are invertible. Find f−1g−1 and gof−1and show that (gof)−1 = f 1o g−1


Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^-1 (x) = (sqrt (x +6)-1)/3 .`


Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).


If f : R → R is defined by f(x) = x2, find f−1 (−25).


If f : C → C is defined by f(x) = (x − 2)3, write f−1 (−1).


Let \[f : \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \to R\]  be a function defined by f(x) = cos [x]. Write range (f).


Let f : R → Rg : R → R be two functions defined by f(x) = x2 + x + 1 and g(x) = 1 − x2. Write fog (−2).


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


If f(x) = 4 −( x - 7)3 then write f-1 (x).


The function 

f : A → B defined by 

f (x) = - x2 + 6x - 8 is a bijection if 

 

 

 

 


Let f be an injective map with domain {xyz} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.

\[f\left( x \right) = 1, f\left( y \right) \neq 1, f\left( z \right) \neq 2 .\]

The value of

\[f^{- 1} \left( 1 \right)\] is 

 


The  function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is

 


Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

\[f : Z \to Z\]  be given by

 ` f (x) = {(x/2, ", if  x is even" ) ,(0 , ", if  x  is  odd "):}`

Then,  f is


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


If  \[f\left( x \right) = \sin^2 x\] and the composite function   \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to


If \[f : R \to R\] is given by \[f\left( x \right) = x^3 + 3, \text{then} f^{- 1} \left( x \right)\] is equal to

 


Write about strlen() function.


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


The function f : R → R given by f(x) = x3 – 1 is ____________.


Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → G be defined by R = { (b1,g1), (b2,g2),(b3,g1)}, then R is ____________.

If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


Find the domain of sin–1 (x2 – 4).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×