हिंदी

Let F : R → R Be a Function Defined by (A) F is a Bijection (B) F is an Injection Only (C) F is Surjection on Only (D) F is Neither an Injection Nor a Surjection - Mathematics

Advertisements
Advertisements

प्रश्न

Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

विकल्प

  •  f is a bijection

  • f is an injection only

  •  f is surjection on only

  • f is neither an injection nor a surjection

MCQ

उत्तर

f is neither an injection nor a surjection

\[f : R \to R\]

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}}\] 
\[\text{For } x = - 2 \text{ and} - 3 \in R \] 
\[f( - 2) = \frac{e^\left| - 2 \right| - e^2}{e^{- 2} + e^2}\] 
\[ = \frac{e^2 - e^2}{e^{- 2} + e^2}\] 
\[ = 0\]  
\[\text{& } f( - 3) = \frac{e^\left| - 3 \right| - e^3}{e^{- 3} + e^3}\] 
\[ = \frac{e^3 - e^3}{e^{- 3} + e^3}\] 
\[ = 0\] \[\text{Hence, for different values of x we are getting same values of f }(x)\] 
\[\text{That means , the given function is many one} . \]

Therefore, this function is not injective.

\[ \text{For } x < 0\] 
\[f (x ) = 0\] 
\[\text{ For } x > 0\] 
\[f(x) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] 
\[ = \frac{e^x + e^{- x}}{e^x + e^{- x}} - \frac{2 e^{- x}}{e^x + e^{- x}}\] 
\[ = 1 - \frac{2 e^{- x}}{e^x + e^{- x}}\] 
\[\text{The value of } \frac{2 e^{- x}}{e^x + e^{- x}} \text{is always positive} . \] 
\[\text{Therefore, the value of} f(x) \text{is always less than} 1\] 
\[\text{Numbers more than 1 are not included in the range but they are included in codomain} . \] 
\[\text{As the codomain is } R . \] 
\[ \therefore \text{Codomain} \neq \text{Range}\] 
\[\text{Hence, the given function is not onto} . \] 

Therefore, this function is not surjective .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 21 | पृष्ठ ७६

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Let fR → R be the Signum Function defined as

f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

and gR → be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


Classify the following function as injection, surjection or bijection :

f : Q − {3} → Q, defined by `f (x) = (2x +3)/(x-3)`


Show that the function f : R − {3} → R − {2} given by f(x) = `(x-2)/(x-3)` is a bijection.


Set of ordered pair of a function ? If so, examine whether the mapping is injective or surjective :{(ab) : a is a person, b is an ancestor of a


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


If f(x) = 2x + 5 and g(x) = x2 + 1 be two real functions, then describe each of the following functions:
(1) fog
(2) gof
(3) fof
(4) f2
Also, show that fof ≠ f2


  ` if  f : (-π/2 , π/2)` → R and g : [−1, 1]→ R be defined as f(x) = tan x and g(x) = `sqrt(1 - x^2)` respectively, describe fog and gof.


Let f be a real function given by f (x)=`sqrt (x-2)`
Find each of the following:

(i) fof
(ii) fofof
(iii) (fofof) (38)
(iv) f2

Also, show that fof ≠ `f^2` .


If f : Q → Qg : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.


Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


Let f : R → R be defined as  `f (x) = (2x - 3)/4.` write fo f-1 (1) .


Write the domain of the real function

`f (x) = sqrtx - [x] .`


Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


Let fg : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x

∈ R, respectively. Then, find gof.  [NCERT EXEMPLAR]


If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = \[\alpha x + \beta\]  then find the values of \[\alpha\] and \[ \beta\] . [NCERT EXEMPLAR]


Let 

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is 

 


If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


If \[f : R \to R is given by f\left( x \right) = 3x - 5, then f^{- 1} \left( x \right)\] 

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.


Let f : R → R be a function defined by f(x) `= ("e"^abs"x" - "e"^-"x")/("e"^"x" + "e"^-"x")` then f(x) is


Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.


Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.


If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


For x ∈ R, x ≠ 0, let f0(x) = `1/(1 - x)` and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of `f_100(3) + f_1(2/3) + f_2(3/2)` is equal to ______.


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.

REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×