हिंदी

If F : Q → Q, G : Q → Q Are Two Functions Defined by F(X) = 2 X and G(X) = X + 2, Show that F and G Are Bijective Maps. Verify that (Gof)−1 = F−1 Og −1. - Mathematics

Advertisements
Advertisements

प्रश्न

If f : Q → Qg : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.

उत्तर

Injectivity of f:
Let x and y be two elements of domain (Q), such that

f(x) = f(y)

⇒">⇒ 2x= 2y
⇒">⇒ x = y

So, f is one-one.
Surjectivity of f:
Let y be in the co-domain (Q), such that f(x) = y.

⇒ 2x = y 

⇒ `x = y/2 in Q` (domain)

⇒ is onto.
So, f is a bijection and, hence, it is invertible.

Finding f  -1:

Let f−1 (x) =y             ...(1)

⇒ x = f (y)

⇒ x = 2y

⇒ `y = x/2`

So, ` f^1 (x) = x/2`    (from (1))

njectivity of g:
Let x and y be two elements of domain (Q), such that
g (x) = g (y)

⇒">⇒  x + 2 = y + 2

⇒">⇒ x = y

So, g is one-one.

Surjectivity of g:
Let y be in the co domain (Q), such that g(x) = y.

⇒ x +2 =y

⇒ x= 2 -y ∈ Q (domain)

 ⇒ g is onto.
So, g is a bijection and, hence, it is invertible.

Finding g -1:

Let g−1(x) = y             ...(2)

⇒ x = g (y)

⇒ x = y+2

⇒ y = x − 2

So, g−1 (x) = x − 2        (From (2)

Verification of (gof)−1 = f−1 og −1:

f(x) = 2x ; g (x) = x + 2

and `f^-1 (x) = x/2 ; g^-1 (x)= x-2`

`Now, (f^-1 o  g^-1) (x) = f^-1 (g^-1)(x))  `

⇒ `(f^-1 o  g ^-1)(x) = f^-1 (x-2) `

⇒ `(f ^-1 o   g^-1) (x) = (x-2)/2 .......... (3)`

(gof) (x) = g (f(x))

= g (2x)

= 2x + 2

Let (gof)-1 (x) = y  ............ (4)

x = (gof) (y)

⇒ x = 2y +2

⇒ 2y = x - 2 

⇒ `y= (x-2)/2`

⇒` (gof)^-1 (x) = (x-2)/2`       [form (4) ....... (5) ]

from (3) and (5)

⇒ `(gof)^-1  = f^-1  o  g^-1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.4 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.4 | Q 12 | पृष्ठ ६९

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?


Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f : → R defined by f(x) = 3 − 4x


Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.


Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = |x|


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = sin2x + cos2x


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 1 + x2


Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


If f : A → B and g : B → C are onto functions, show that gof is a onto function.


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Find fog and gof  if : f (x) = x+1, g(x) = `e^x`

.


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


Consider f : R → R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with inverse f−1 of f given by f−1 `(x)= sqrt (x-4)` where R+ is the set of all non-negative real numbers.


Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


If f : R → R is defined by f(x) = x2, write f−1 (25)


Let f : R → Rg : R → R be two functions defined by f(x) = x2 + x + 1 and g(x) = 1 − x2. Write fog (−2).


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



 \[f : A \to \text{B given by } 3^{ f\left( x \right)} + 2^{- x} = 4\] is a bijection, then

 

 

 

 


Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is

 


\[f : R \to R\] is defined by

\[f\left( x \right) = \frac{e^{x^2} - e^{- x^2}}{e^{x^2 + e^{- x^2}}} is\]

 


Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 


If  \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to


Mark the correct alternative in the following question:
Let A = {1, 2, ... , n} and B = {a, b}. Then the number of subjections from A into B is


If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.


Write about strcmp() function.


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let f : R → R be a function defined by f(x) `= ("e"^abs"x" - "e"^-"x")/("e"^"x" + "e"^-"x")` then f(x) is


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?

If f : R `rightarrow` R is defined by `f(x) = (2x - 7)/4`, show that f(x) is one-one and onto.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×