हिंदी

If F : a → B and G : B → C Are onto Functions, Show that Gof is a onto Function. - Mathematics

Advertisements
Advertisements

प्रश्न

If f : A → B and g : B → C are onto functions, show that gof is a onto function.

उत्तर

Given,  f : A → B and g : B → C are onto.
Then, gof : A → C
Let us take an element z in the co-domain (C).
Now, z is in C and g : B → C is onto.
So, there exists some element y in B, such that g (y) = z   ... (1)

Now, y is in B and f : A → is onto.
So, there exists some x in A, such that f (x) = y ... (2)
From (1) and (2),
z = g (y) = g (f (x)) = (gof) (x)
So, z = (gof) (x), where x is in A.
Hence, gof is onto.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.2 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.2 | Q 14 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Prove that the greatest integer function f: → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.


Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Let fR → R be the Signum Function defined as

f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

and gR → be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?


Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)


Let f : N → N be defined by

`f(n) = { (n+ 1, if n  is  odd),( n-1 , if n  is  even):}`

Show that f is a bijection. 

                      [CBSE 2012, NCERT]


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 2x − 3 and  g(x) = 3x − 4 .


Consider f : N → Ng : N → N and h : N → R defined as f(x) = 2xg(y) = 3y + 4 and h(z) = sin z for all xyz ∈ N. Show that ho (gof) = (hogof.


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


If f : R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1 (5).


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.


Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)}                                                                                                        [NCERT EXEMPLAR]


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



Which of the following functions form Z to itself are bijections?

 

 

 
 

The function

\[f : R \to R\] defined by\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)\]

(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto


Let

\[f : R \to R\]
\[f\left( x \right) = \frac{x^2 - 8}{x^2 + 2}\]
Then,  f is


Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 


If \[f : R \to R\] is given by \[f\left( x \right) = x^3 + 3, \text{then} f^{- 1} \left( x \right)\] is equal to

 


Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


Write about strlen() function.


Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


Let g(x) = x2 – 4x – 5, then ____________.


Range of `"f"("x") = sqrt((1 - "cos x") sqrt ((1 - "cos x")sqrt ((1 - "cos x")....infty))`


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: R → R be defined by f(x) = x2 is:

'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×