हिंदी

Prove that the greatest integer function f: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the greatest integer function f: → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

योग

उत्तर

f: R → R is given by,

f(x) = [x]

It is seen that f(1.2) = [1.2] = 1, f(1.9) = [1.9] = 1.

∴ f(1.2) = f(1.9), but 1.2 ≠ 1.9.

∴ f is not one-one.

Now, consider 0.7 ∈ R.

It is known that f(x) = [x] is always an integer. Thus, there does not exist any element x ∈ R such that f(x) = 0.7.

∴ f is not onto.

Hence, the greatest integer function is neither one-one nor onto.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations and Functions - Exercise 1.2 [पृष्ठ १०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 1 Relations and Functions
Exercise 1.2 | Q 3 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the function f in `A=R-{2/3} ` defined as `f(x)=(4x+3)/(6x-4)` is one-one and onto hence find f-1


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = sin2x + cos2x


Show that the function f : R − {3} → R − {2} given by f(x) = `(x-2)/(x-3)` is a bijection.


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


Find fog and gof  if : f (x) = x2 g(x) = cos x .


If f(x) = 2x + 5 and g(x) = x2 + 1 be two real functions, then describe each of the following functions:
(1) fog
(2) gof
(3) fof
(4) f2
Also, show that fof ≠ f2


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.

                    [CBSE 2012, 2014]


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


If f : R → (−1, 1) defined by `f (x) = (10^x- 10^-x)/(10^x + 10 ^-x)` is invertible, find f−1.


Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.


Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 


Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


The inverse of the function

\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by

\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is 

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Mark the correct alternative in the following question:
Let f : R→ R be defined as, f(x) =  \[\begin{cases}2x, if x > 3 \\ x^2 , if 1 < x \leq 3 \\ 3x, if x \leq 1\end{cases}\] 

Then, find f( \[-\]1) + f(2) + f(4)

 


Show that the function f: R → R defined by f(x) = `x/(x^2 + 1)`, ∀ ∈ + R , is neither one-one nor onto


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

g = {(1, 4), (2, 4), (3, 4)}


Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


Range of `"f"("x") = sqrt((1 - "cos x") sqrt ((1 - "cos x")sqrt ((1 - "cos x")....infty))`


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → G be defined by R = { (b1,g1), (b2,g2),(b3,g1)}, then R is ____________.

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: N → N be defined by f(x) = x2 is ____________.

'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:


Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


A function f : [– 4, 4] `rightarrow` [0, 4] is given by f(x) = `sqrt(16 - x^2)`. Show that f is an onto function but not a one-one function. Further, find all possible values of 'a' for which f(a) = `sqrt(7)`.



The given function f : R → R is not ‘onto’ function. Give reason.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×