हिंदी

Classify the Following Functions as Injection, Surjection Or Bijection : F : Z → Z, Defined By F(X) = X2 + X - Mathematics

Advertisements
Advertisements

प्रश्न

Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x

योग

उत्तर

  f : Z → Z, defined by f(x) = x2 + x

Injection test:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y).

f(x= f(y)

x2y+ y

Here, we cannot say that x = y.

For example, x = 2 and y = - 3

 Then,

x2+x=22+2= 6

y2+y=(3)23= 6

So, we have two numbers 2 and -3 in the domain Z whose image is same as 6.

So, f is not an injection .

Surjection test:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).

f(x) = y

x2 y

Here, we cannot say ∈ Z.

For example, y = - 4.

x2 − 4

x20

=` (-1 ±sqrt-5)/2 = (-1 ±isqrt5)/2`  which is not in Z.

So, f is not a surjection and  f is not a bijection.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.1 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.1 | Q 5.06 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the function f in `A=R-{2/3} ` defined as `f(x)=(4x+3)/(6x-4)` is one-one and onto hence find f-1


Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?


Prove that the greatest integer function f: → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.


Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f: → R defined by f(x) = 1 + x2


Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Let f: R → R be defined as f(x) = x4. Choose the correct answer.


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Give an example of a function which is not one-one but onto ?


Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1


Suppose f1 and f2 are non-zero one-one functions from R to R. Is `f_1 / f^2` necessarily one - one? Justify your answer. Here,`f_1/f_2 : R → R   is   given   by   (f_1/f_2) (x) = (f_1(x))/(f_2 (x))  for all  x in R .`


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


If f(x) = |x|, prove that fof = f.


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 


If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


Let A be a finite set. Then, each injective function from A into itself is not surjective.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

g = {(1, 4), (2, 4), (3, 4)}


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


Which one of the following graphs is a function of x?

Graph A Graph B

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×