हिंदी

Let A = {A, B, C}, B = {U V, W} and Let F And G Be Two Functions From A To B And From B To A, Respectively, Defined as : F = {(A, V), (B, U), (C, W)}, G = {(U, B), (V, A), (W, C)}.Show that - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.

उत्तर

Proving f is a bijection :
f = {(av), (bu), (cw)} and : A → B
Injectivity of f: No two elements of have the same image in B.
So, f is one-one.
Surjectivity of f: Co-domain of f = {u vw}
Range of = {u vw}
Both are same.
So,  f is onto.
Hence, f is a bijection.

Proving is a bijection :
g = {(ub), (va), (wc)} and B → A
Injectivity of g: No two elements of B  have the same image in A.
So, g is one-one.
Surjectivity of g: Co-domain of g = {abc}
Range of g = {abc}
Both are the same.
So, g is onto.
Hence, g is a bijection.

Finding  fog :
Co-domain of g is same as the domain of f.
So, fog exists and fog : {u vw→ {u vw}

(fog) (u (g (u)f (bu

(fog) (vf (g (v)f (av

(fog) (wf (g (w)f (cw

So, fog (u, u)(v, v)(w, w}

Finding gof :
Co-domain of f is same as the domain of g.
So, fog exists and gof : {abc→ {abc}

(gof) (ag (f (a)g (va

(gof (bg (f (b)g (ub

(gof) (cg (f (c)g (wc

So, go(a, a), (b, b), (c, c}

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.2 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.2 | Q 4 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2 


Let f : N → N be defined by

`f(n) = { (n+ 1, if n  is  odd),( n-1 , if n  is  even):}`

Show that f is a bijection. 

                      [CBSE 2012, NCERT]


Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?


Give examples of two functions f : N → Z and g : Z → Z, such that gof is injective but gis not injective.


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin `x^2`


  ` if  f : (-π/2 , π/2)` → R and g : [−1, 1]→ R be defined as f(x) = tan x and g(x) = `sqrt(1 - x^2)` respectively, describe fog and gof.


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^-1 (x) = (sqrt (x +6)-1)/3 .`


If f : R → (−1, 1) defined by `f (x) = (10^x- 10^-x)/(10^x + 10 ^-x)` is invertible, find f−1.


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.


Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)}                                                                                                        [NCERT EXEMPLAR]


If the mapping f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3}, given by f = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)}, then write fog. [NCERT EXEMPLAR]


Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 


If \[f : R \to R is given by f\left( x \right) = 3x - 5, then f^{- 1} \left( x \right)\] 

 


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


If  \[f : R \to \left( - 1, 1 \right)\] is defined by

\[f\left( x \right) = \frac{- x|x|}{1 + x^2}, \text{ then } f^{- 1} \left( x \right)\] equals

 


Which function is used to check whether a character is alphanumeric or not?


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Consider the set A containing n elements. Then, the total number of injective functions from A onto itself is ______


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.


Which of the following functions from Z into Z is bijective?


Let f : R → R, g : R → R be two functions such that f(x) = 2x – 3, g(x) = x3 + 5. The function (fog)-1 (x) is equal to ____________.


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


The function f: R → R defined as f(x) = x3 is:


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Three friends F1, F2, and F3 exercised their voting right in general election-2019, then which of the following is true?

An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → G be defined by R = { (b1,g1), (b2,g2),(b3,g1)}, then R is ____________.

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.

If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


Let f: R → R defined by f(x) = 3x. Choose the correct answer


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×