हिंदी

If F : R → ( − 1 , 1 ) is Defined by F ( X ) = − X | X | 1 + X 2 , Then F − 1 ( X ) Equals (A) √ | X | 1 − | X | (B) Sgn ( X ) √ | X | 1 − | X | (C) − √ X 1 − X (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f : R \to \left( - 1, 1 \right)\] is defined by

\[f\left( x \right) = \frac{- x|x|}{1 + x^2}, \text{ then } f^{- 1} \left( x \right)\] equals

 

विकल्प

  • \[\sqrt{\frac{\left| x \right|}{1 - \left| x \right|}}\]

  • \[\text{ Sgn } \left( x \right) \sqrt{\frac{\left| x \right|}{1 - \left| x \right|}}\]

  •  \[- \sqrt{\frac{x}{1 - x}}\]

  • None of these

MCQ

उत्तर

(b)  \[- Sgn \left( x \right) \sqrt{\frac{\left| x \right|}{1 - \left| x \right|}}\]

\[\text{We have}, f\left( x \right) = \frac{- x|x|}{1 + x^2} x \in \left( - 1, 1 \right)\] 
\[\text{Case} - \left( I \right)\] 
\[\text{When}, x < 0, \] 
\[\text{Then}, \left| x \right| = - x\] 
\[\text{And} f\left( x \right) > 0\] 
\[\text{Now}, \] 
\[f\left( x \right) = \frac{- x\left( - x \right)}{1 + x^2}\] 
\[ \Rightarrow y = \frac{x^2}{1 + x^2}\] 
\[ \Rightarrow \frac{y}{1} = \frac{x^2}{1 + x^2}\] 
\[ \Rightarrow \frac{y + 1}{y - 1} = \frac{x^2 + 1 + x^2}{x^2 - 1 - x^2} \left[ \text { Using Componendo and dividendo } \right]\] 
\[ \Rightarrow \frac{y + 1}{y - 1} = \frac{2 x^2 + 1}{- 1}\] 
\[ \Rightarrow - \frac{y + 1}{y - 1} = 2 x^2 + 1\] 
\[ \Rightarrow \frac{2y}{1 - y} = 2 x^2 \] 
\[ \Rightarrow \frac{y}{1 - y} = x^2 \] 

\[ \Rightarrow x = - \sqrt{\frac{y}{1 - y}} \left( \text{ As } x < 0 \right)\] 
\[ \Rightarrow x = - \sqrt{\frac{\left| y \right|}{1 - \left| y \right|}} \] 
\[ \left[ \text{ As } y > 0 \right]\] 
\[\text{To find the inverse interchanging x and y we get}, \] 
\[ f^{- 1} \left( x \right) = - \sqrt{\frac{\left| x \right|}{1 - \left| x \right|}} . . . \left( i \right)\] 
\[\text{Case} - \left( II \right)\] 
\[\text{When}, x > 0, \] 
\[\text{Then}, \left| x \right| = x\] 
\[\text{And} f\left( x \right) < 0\] 
\[\text{Now}, \] 
\[f\left( x \right) = \frac{- x\left( x \right)}{1 + x^2}\] 
\[ \Rightarrow y = \frac{- x^2}{1 + x^2}\] 
\[ \Rightarrow \frac{y}{1} = \frac{- x^2}{1 + x^2}\] 
\[ \Rightarrow \frac{y + 1}{y - 1} = \frac{- x^2 + 1 + x^2}{- x^2 - 1 - x^2} \left[ \text{Using Componendo and dividendo} \right]\] 
\[ \Rightarrow \frac{y + 1}{y - 1} = \frac{1}{- 2 x^2 - 1}\] 
\[ \Rightarrow \frac{1 + y}{1 - y} = \frac{1}{2 x^2 + 1}\] 
\[ \Rightarrow \frac{1 - y}{1 + y} = 2 x^2 + 1\] 
\[ \Rightarrow \frac{- 2y}{1 + y} = 2 x^2 \] 

\[ \Rightarrow x^2 = \frac{- y}{1 + y}\] 
\[ \Rightarrow x = \sqrt{\frac{- y}{1 + y}} \left( \text{As} x > 0 \right)\] 
\[ \Rightarrow x = \sqrt{\frac{\left| y \right|}{1 - \left| y \right|}} \] 
\[ \left[ \text{ As } y < 0 \right]\] 
\[\text{To find the inverse interchanging x and y we get}, \] 
\[ f^{- 1} \left( x \right) = \sqrt{\frac{\left| x \right|}{1 - \left| x \right|}} . . . \left( ii \right)\] 
\[\text{Case} - \left( III \right)\] 
\[\text{When}, x = 0, \] 
\[\text{Then}, f\left( x \right) = 0\] 
\[\text{Hence}, f^{- 1} \left( x \right) = 0 . . . \left( iii \right)\] 
\[\text{Combinig equation} \left( i \right) , \left( ii \right) \text{and} \left( iii \right) \text{we get}, \] 
\[ f^{- 1} \left( x \right) = - Sgn\left( x \right)\sqrt{\frac{\left| x \right|}{1 - \left| x \right|}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 43 | पृष्ठ ७८

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the function f in `A=R-{2/3} ` defined as `f(x)=(4x+3)/(6x-4)` is one-one and onto hence find f-1


Let f: R → R be defined as f(x) = 3x. Choose the correct answer.


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = sin2x + cos2x


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : `f (x) = x/2`


Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2 


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = 2x + x2 and  g(x) = x3


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


Consider f : N → Ng : N → N and h : N → R defined as f(x) = 2xg(y) = 3y + 4 and h(z) = sin z for all xyz ∈ N. Show that ho (gof) = (hogof.


If f(x) = |x|, prove that fof = f.


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


Let  f  be any real function and let g be a function given by g(x) = 2x. Prove that gof = f + f.


Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^-1 (x) = (sqrt (x +6)-1)/3 .`


If f : A → Ag : A → A are two bijections, then prove that fog is a surjection ?


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.


Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


Let fg : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x

∈ R, respectively. Then, find gof.  [NCERT EXEMPLAR]


If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = \[\alpha x + \beta\]  then find the values of \[\alpha\] and \[ \beta\] . [NCERT EXEMPLAR]


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



A function f from the set of natural numbers to the set of integers defined by

\[f\left( n \right)\begin{cases}\frac{n - 1}{2}, & \text{when n is odd} \\ - \frac{n}{2}, & \text{when n is even}\end{cases}\]

 


Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


Which function is used to check whether a character is alphanumeric or not?


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → G be defined by R = { (b1,g1), (b2,g2),(b3,g1)}, then R is ____________.

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: R → R be defined by f(x) = x2 is:

If f; R → R f(x) = 10x + 3 then f–1(x) is:


Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if  "n is even"):}` Is the function injective? Justify your answer.


Consider a set containing function A= {cos–1cosx, sin(sin–1x), sinx((sinx)2 – 1), etan{x}, `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}. B, C, D, are subsets of A, such that B contains periodic functions, C contains even functions, D contains odd functions then the value of n(B ∩ C) + n(B ∩ D) is ______ where {.} denotes the fractional part of functions)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×