हिंदी

A Function F from the Set of Natural Numbers to the Set of Integers Defined by (A) Neither One-one Nor onto (B) One-one but Not onto (C) onto but Not One-one (D) One-one and onto - Mathematics

Advertisements
Advertisements

प्रश्न

A function f from the set of natural numbers to the set of integers defined by

\[f\left( n \right)\begin{cases}\frac{n - 1}{2}, & \text{when n is odd} \\ - \frac{n}{2}, & \text{when n is even}\end{cases}\]

 

विकल्प

  • neither one-one nor onto

  • one-one but not onto

  • onto but not one-one

  • one-one and onto

MCQ

उत्तर

Injectivity:
Let x and y be any two elements in the domain (N).

\[Case-1: \text{Both  x and y are even}.\] 

\[\text{Let}f\left( x \right) = f\left( y \right)\] 
\[ \Rightarrow \frac{- x}{2} = \frac{- y}{2}\] 
\[ \Rightarrow - x = - y\] 
\[ \Rightarrow x = y\] 
\[Case-2: \text{Both x and y are odd}.\] 
\[\text{Let}f\left( x \right) = f\left( y \right)\] 
\[ \Rightarrow \frac{x - 1}{2} = \frac{y - 1}{2}\] 
\[ \Rightarrow x - 1 = y - 1\] 
\[ \Rightarrow x = y\] 
\[Case-3: \text{ Let  x be even and y be odd}.\] 
\[\text{Then},f\left( x \right) = \frac{- x}{2}\text{and}f\left( y \right) = \frac{y - 1}{2}\] 
\[\text{Then, clearly}\] 
\[x \neq y \] 
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\] 
\[\text{From all the cases,fis one-one}.\] 
Surjectivity:
\[\text{Co-domain off} = Z = \left\{ . . . , - 3, - 2, - 1, 0, 1, 2, 3, . . . . \right\}\] 

\[\text{Range of f} = \left\{ . . . , \frac{- 3 - 1}{2}, \frac{- \left( - 2 \right)}{2}, \frac{- 1 - 1}{2}, \frac{0}{2}, \frac{1 - 1}{2}, \frac{- 2}{2}, \frac{3 - 1}{2}, . . . \right\}\] 
\[ \Rightarrow \text{Range of f} = \left\{ . . . , - 2, 1, - 1, 0, 0, - 1, 1, . . . \right\}\] 
\[ \Rightarrow\text{Range of f } = \left\{ . . . , - 2, - 1, 0, 1, 2, . . . . \right\}\] 
\[ \Rightarrow \text{Co-domain of f = Range of f}\] 
\[\Rightarrow\] f is onto.
So, the answer is (d).
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 26 | पृष्ठ ७७

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Check the injectivity and surjectivity of the following function:

f: → N given by f(x) = x3


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Find gof and fog when f : R → R and g : R → R is  defined by  f(x) = 8x3 and  g(x) = x1/3.


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


If f : A → Ag : A → A are two bijections, then prove that fog is an injection ?


Which one of the following graphs represents a function?


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.


If the mapping f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3}, given by f = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)}, then write fog. [NCERT EXEMPLAR]


If f(x) = 4 −( x - 7)3 then write f-1 (x).


The function f : R → R defined by

`f (x) = 2^x + 2^(|x|)` is 

 


Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is

 


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 


If  \[f\left( x \right) = \sin^2 x\] and the composite function   \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to


If \[f : R \to R\] is given by \[f\left( x \right) = x^3 + 3, \text{then} f^{- 1} \left( x \right)\] is equal to

 


Mark the correct alternative in the following question:
Let f :  \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\]  R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,

 


Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


Let C be the set of complex numbers. Prove that the mapping f: C → R given by f(z) = |z|, ∀ z ∈ C, is neither one-one nor onto.


Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.


The smallest integer function f(x) = [x] is ____________.


The function f : R → R defined by f(x) = 3 – 4x is ____________.


Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • The function f: Z → Z defined by f(x) = x2 is ____________.

Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.


Let x is a real number such that are functions involved are well defined then the value of `lim_(t→0)[max{(sin^-1  x/3 + cos^-1  x/3)^2, min(x^2 + 4x + 7)}]((sin^-1t)/t)` where [.] is greatest integer function and all other brackets are usual brackets.


Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.

(Note P(x, y) is lattice point if x, y ∈ I)

(where [.] denotes greatest integer function)


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.



The given function f : R → R is not ‘onto’ function. Give reason.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×