हिंदी

The Function \[F : [0, \Infty ) \To R Given by F\Left( X \Right) = \Frac{X}{X + 1} Is\] (A) One-one and onto (B) One-one but Not onto (C) onto but Not One-one (D) onto but Not One-one - Mathematics

Advertisements
Advertisements

प्रश्न

The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 

विकल्प

  • one-one and onto

  • one-one but not onto

  • onto but not one-one

  • onto but not one-one

MCQ

उत्तर

Injectivity:
Let x and y be two elements in the domain, such that

\[f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow \frac{x}{x + 1} = \frac{y}{y + 1}\]
\[ \Rightarrow xy + x = xy + y\]
\[ \Rightarrow x = y\]

So, f is one-one.
Surjectivity:
Let y be an element in the co domain R, such that

\[y = f\left( x \right)\]
\[ \Rightarrow y = \frac{x}{x + 1}\]
\[ \Rightarrow xy + y = x\]
\[ \Rightarrow x\left( y - 1 \right) = - y\]
\[ \Rightarrow x = \frac{- y}{y - 1}\]
\[\text{Range off} = R - \left\{ 1 \right\} \neq \text{ co domain } (R)\]

⇒ is not onto.
So, the answer is (b)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 10 | पृष्ठ ७६

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?


Let f: R → R be defined as f(x) = x4. Choose the correct answer.


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Let fR → R be the Signum Function defined as

f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

and gR → be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?


Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x3


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Let fgh be real functions given by f(x) = sin xg (x) = 2x and h (x) = cos x. Prove that fog = go (fh).


Find f −1 if it exists : f : A → B, where A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2


Consider f : R → R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with inverse f−1 of f given by f−1 `(x)= sqrt (x-4)` where R+ is the set of all non-negative real numbers.


If f : A → Ag : A → A are two bijections, then prove that fog is an injection ?


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


 Let
\[g\left( x \right) = 1 + x - \left[ x \right] \text{and} f\left( x \right) = \begin{cases}- 1, & x < 0 \\ 0, & x = 0, \\ 1, & x > 0\end{cases}\] where [x] denotes the greatest integer less than or equal to x. Then for all \[x, f \left( g \left( x \right) \right)\] is equal to


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is injective. Then both f and g are injective functions.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


The mapping f : N → N is given by f(n) = 1 + n2, n ∈ N when N is the set of natural numbers is ____________.


Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: N → N be defined by f(x) = x2 is ____________.

If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


Let f: R→R be defined as f(x) = 2x – 1 and g: R – {1}→R be defined as g(x) = `(x - 1/2)/(x - 1)`. Then the composition function f (g(x)) is ______.


Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.


Consider a set containing function A= {cos–1cosx, sin(sin–1x), sinx((sinx)2 – 1), etan{x}, `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}. B, C, D, are subsets of A, such that B contains periodic functions, C contains even functions, D contains odd functions then the value of n(B ∩ C) + n(B ∩ D) is ______ where {.} denotes the fractional part of functions)


Let f(1, 3) `rightarrow` R be a function defined by f(x) = `(x[x])/(1 + x^2)`, where [x] denotes the greatest integer ≤ x, Then the range of f is ______.


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


If f : R `rightarrow` R is defined by `f(x) = (2x - 7)/4`, show that f(x) is one-one and onto.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×