हिंदी

Which of the Following Functions From A To B Are One-one and Onto? F2 = {(2, A), (3, B), (4, C)} ; A = {2, 3, 4}, B = {A, B, C} - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}

योग

उत्तर

f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}

Injectivity:
f2 (2) = a
f2 (3) = b
f2 (4) = c

⇒ Every element of A has different images in B.
So, f2 is one-one.

Surjectivity:
Co-domain of f2 = {abc}

Range of f2 = set of images = {abc}

⇒ Co-domain = range

So, f2 is onto.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.1 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.1 | Q 2.2 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f : → R defined by f(x) = 3 − 4x


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Give examples of two surjective functions f1 and f2 from Z to Z such that f1 + f2 is not surjective.


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and  g(x) = x2 + 5 .


If f : A → B and g : B → C are onto functions, show that gof is a onto function.


Find fog and gof  if : f (x) = |x|, g (x) = sin x .


  ` if  f : (-π/2 , π/2)` → R and g : [−1, 1]→ R be defined as f(x) = tan x and g(x) = `sqrt(1 - x^2)` respectively, describe fog and gof.


Let f be a real function given by f (x)=`sqrt (x-2)`
Find each of the following:

(i) fof
(ii) fofof
(iii) (fofof) (38)
(iv) f2

Also, show that fof ≠ `f^2` .


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


Write the total number of one-one functions from set A = {1, 2, 3, 4} to set B = {abc}.


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


Let `f : R - {- 3/5}` → R be a function defined as `f  (x) = (2x)/(5x +3).` 

f-1 : Range of f → `R -{-3/5}`.


Let A = {abcd} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]


If f(x) = 4 −( x - 7)3 then write f-1 (x).


Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


Which of the following functions form Z to itself are bijections?

 

 

 
 

Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 


\[f : R \to R\] is defined by

\[f\left( x \right) = \frac{e^{x^2} - e^{- x^2}}{e^{x^2 + e^{- x^2}}} is\]

 


Mark the correct alternative in the following question:
Let f : R→ R be defined as, f(x) =  \[\begin{cases}2x, if x > 3 \\ x^2 , if 1 < x \leq 3 \\ 3x, if x \leq 1\end{cases}\] 

Then, find f( \[-\]1) + f(2) + f(4)

 


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one.


Let A be a finite set. Then, each injective function from A into itself is not surjective.


Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.


Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?

'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×