हिंदी

Mark the Correct Alternative in the Following Question: Let F : R → R Be Defined as F(X) = ⎧ ⎨ ⎩ 2 X , I F X > 3 X 2 , I F 1 < X ≤ 3 3 X , I F X ≤ 1 Then, Find F( − 1) + F(2) + F(4) - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in the following question:
Let f : R→ R be defined as, f(x) =  \[\begin{cases}2x, if x > 3 \\ x^2 , if 1 < x \leq 3 \\ 3x, if x \leq 1\end{cases}\] 

Then, find f( \[-\]1) + f(2) + f(4)

 

विकल्प

  • 14    

  • 5       

  • none of these

MCQ

उत्तर

\[We have, \] 
\[f\left( x \right) = \begin{cases}2x, if x > 3 \\ x^2 , if 1 < x \leq 3 \\ 3x, if x \leq 1\end{cases}\] 
\[Now, \] 
\[f\left( - 1 \right) + f\left( 2 \right) + f\left( 4 \right)\] 
\[ = 3\left( - 1 \right) + 2^2 + 2\left( 4 \right)\] 
\[ = - 3 + 4 + 8\] 
\[ = 9\]

Hence, the correct alternative is option (a).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 51 | पृष्ठ ७९

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


Set of ordered pair of a function ? If so, examine whether the mapping is injective or surjective :{(ab) : a is a person, b is an ancestor of a


Show that the exponential function f : R → R, given by f(x) = ex, is one-one but not onto. What happens if the co-domain is replaced by`R0^+` (set of all positive real numbers)?


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 2x − 3 and  g(x) = 3x − 4 .


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


Let fgh be real functions given by f(x) = sin xg (x) = 2x and h (x) = cos x. Prove that fog = go (fh).


State with reason whether the following functions have inverse:

h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}


Find f −1 if it exists : f : A → B, where A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2


If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


Let \[f : \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \to R\]  be a function defined by f(x) = cos [x]. Write range (f).


Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]


Write the domain of the real function

`f (x) = sqrtx - [x] .`


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.


What is the range of the function

`f (x) = ([x - 1])/(x -1) ?`


Let A = {abcd} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]


Let fg : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x

∈ R, respectively. Then, find gof.  [NCERT EXEMPLAR]


 \[f : A \to \text{B given by } 3^{ f\left( x \right)} + 2^{- x} = 4\] is a bijection, then

 

 

 

 


If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =


Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

The function

\[f : R \to R, f\left( x \right) = x^2\]
 

Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 


 Let
\[g\left( x \right) = 1 + x - \left[ x \right] \text{and} f\left( x \right) = \begin{cases}- 1, & x < 0 \\ 0, & x = 0, \\ 1, & x > 0\end{cases}\] where [x] denotes the greatest integer less than or equal to x. Then for all \[x, f \left( g \left( x \right) \right)\] is equal to


If \[f : R \to R\] is given by \[f\left( x \right) = x^3 + 3, \text{then} f^{- 1} \left( x \right)\] is equal to

 


Mark the correct alternative in the following question:
Let f :  \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\]  R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,

 


If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______.


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if  "n is even"):}` Is the function injective? Justify your answer.


Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×