हिंदी

Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = 2|x - 1/2|- 1, x in A. Are f and g equal? Justify your answer. (Hint: One may note - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).

योग

उत्तर

It is given that A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2}.

Also, it is given that f, g: A → B are defined by f(x) = x2 − x, x ∈ A and `g(x) = 2|x - 1/2| - 1, x in A`.

It is observed that:

`f(-1) = (1^2) - (-1) = 1+1 = 2`

`g(-1) = 2|(-1)-1/2| - 1`

`= 2(3/2) - 1`

= 3 -1

=2

=> f(-1) = g(-1)

f(0) = (0)^2 - 0 = 0

`g(0) = 2|0 - 1/2| -  1`

` = 2(1/2) - 1`

= 1 - 1

= 0

=> f(0) = g(0)

`f(1) = (1)^2 - 1`

= 1 -   1

= 0

`g(1) = 2|1 - 1/2| - 1`

`= 2(1/2) - 1`

= 1 -1

= 0

=>f(1) = g(1)

`f(2) = (2)^2 - 2`

= 4 - 2

= 2

`g(2) = 2|2-1/2| - 1`

` = 2(3/2)-1 `

= 3 -1

= 2

`=> f(2) = g(2)`

:. f(a) = g(a) ∀ a ∈ A

Hence, the functions f and g are equal.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations and Functions - Exercise 1.5 [पृष्ठ ३०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 1 Relations and Functions
Exercise 1.5 | Q 15 | पृष्ठ ३०

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Prove that the greatest integer function f: → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.


Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Let f: R → R be defined as f(x) = x4. Choose the correct answer.


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 8 and g(x) = 3x3 + 1 .


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x and g(x) = |x| .


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


Give examples of two functions f : N → N and g : N → N, such that gof is onto but f is not onto.


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Let fgh be real functions given by f(x) = sin xg (x) = 2x and h (x) = cos x. Prove that fog = go (fh).


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^-1 (x) = (sqrt (x +6)-1)/3 .`


If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.


Let f be a function from R to R, such that f(x) = cos (x + 2). Is f invertible? Justify your answer.


If f : R → R is given by f(x) = x3, write f−1 (1).


Let \[f : \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \to R\]  be a function defined by f(x) = cos [x]. Write range (f).


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Let f : R → R be defined as  `f (x) = (2x - 3)/4.` write fo f-1 (1) .


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


The  function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is

 


\[f : Z \to Z\]  be given by

 ` f (x) = {(x/2, ", if  x is even" ) ,(0 , ", if  x  is  odd "):}`

Then,  f is


If  \[f\left( x \right) = \sin^2 x\] and the composite function   \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to


If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______.


Which of the following functions from Z into Z are bijections?


Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.


Let f : R → R be a function defined by f(x) `= ("e"^abs"x" - "e"^-"x")/("e"^"x" + "e"^-"x")` then f(x) is


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: N → N be defined by f(x) = x2 is ____________.

Let f: R → R defined by f(x) = 3x. Choose the correct answer


Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


`x^(log_5x) > 5` implies ______.


Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals ______.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×