हिंदी

If f(x) = x+34x−5,g(x)=3+5x4x−1 then verify that (fog)(x) = x. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.

योग

उत्तर

f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)`

`("fog")(x) = "f(g"(x))`

= f`((3+5x)/(4x-1))`

=`((3+5x)/(4x-1)+3)/(4((3+5x)/(4x-1))-5`

= `(3+5x+12x - 3)/(12+20x-20x+5)`

= `(17x)/17`

= x

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Miscellaneous Exercise 2 [पृष्ठ ३२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 2 Functions
Miscellaneous Exercise 2 | Q 9 | पृष्ठ ३२

संबंधित प्रश्न

Show that the function f in `A=R-{2/3} ` defined as `f(x)=(4x+3)/(6x-4)` is one-one and onto hence find f-1


If f : A → B and g : B → C are onto functions, show that gof is a onto function.


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin `x^2`


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


 If f : R → R be defined by f(x) = x4, write f−1 (1).

If the function

\[f : R \to R\]  be such that

\[f\left( x \right) = x - \left[ x \right]\] where [x] denotes the greatest integer less than or equal to x, then \[f^{- 1} \left( x \right)\]

 


 Let
\[g\left( x \right) = 1 + x - \left[ x \right] \text{and} f\left( x \right) = \begin{cases}- 1, & x < 0 \\ 0, & x = 0, \\ 1, & x > 0\end{cases}\] where [x] denotes the greatest integer less than or equal to x. Then for all \[x, f \left( g \left( x \right) \right)\] is equal to


Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


Which function is used to check whether a character is alphanumeric or not?


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Which of the following functions from Z into Z are bijections?


The number of bijective functions from set A to itself when A contains 106 elements is ____________.


Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.


The function f: R → R defined as f(x) = x3 is:


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×