हिंदी

If F (X) = `Sqrt (X +3) And G (X) = X ^2 + 1` Be Two Real Functions, Then Find Fog And Gof. - Mathematics

Advertisements
Advertisements

प्रश्न

if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.

उत्तर

f(x)= `sqrt (x + 3)`

For domain, x + 3≥0

⇒ x≥ −3

Domain of f =[-3, ∞)

Since f is a square root function, range of f =[0, ∞)

f : [−3, ∞) → [0, ∞)

g (x)= x2+1 is a polynomial.

⇒ g : R → R

Computation of fog:

Range of g  is not a subset of the domain of f.and domain (fog)={ x: x ∈ domain of g and g (x) ∈ domain of f (x) }

⇒ Domain (fog) = { x : x ∈ R and  x2+1∈ [−3, ∞)}

⇒ Domain (fog)={ x : x ∈ R and  x2+1 ≥−3 }

⇒ Domain (fog)={x : x ∈ R and  x2+4 ≥ 0}

⇒ Domain (fog) = {x : x ∈ R and x ∈ R}

⇒ Domain (fog) = R

fog : R → R

(fog) (x) = f(g (x))

= f (x2+1)

= `sqrt(x^2 +1 +3)`

= ` sqrt (x^2 +4)`

Computation of gof :

Range of f  is a subset of the domain of g.

gof : [−3, ∞) → R

⇒ (gof) (x) = g (f (x))

=g ` sqrt (x +3)^2  +1`

= x + 3 + 1

= x + 4

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.3 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.3 | Q 10 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Let f: R → R be defined as f(x) = x4. Choose the correct answer.


Give an example of a function which is not one-one but onto ?


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


If f : R → R be the function defined by f(x) = 4x3 + 7, show that f is a bijection.


Consider f : N → Ng : N → N and h : N → R defined as f(x) = 2xg(y) = 3y + 4 and h(z) = sin z for all xyz ∈ N. Show that ho (gof) = (hogof.


Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


Which of the following graphs represents a one-one function?


If f : C → C is defined by f(x) = (x − 2)3, write f−1 (−1).


If f : R → R is defined by f(x) = 10 x − 7, then write f−1 (x).


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


What is the range of the function

`f (x) = ([x - 1])/(x -1) ?`


Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


The function 

f : A → B defined by 

f (x) = - x2 + 6x - 8 is a bijection if 

 

 

 

 


Let

f : R → R be given by

\[f\left( x \right) = \left[ x^2 \right] + \left[ x + 1 \right] - 3\]

where [x] denotes the greatest integer less than or equal to x. Then, f(x) is
 


(d) one-one and onto


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


If \[g \left( f \left( x \right) \right) = \left| \sin x \right| \text{and} f \left( g \left( x \right) \right) = \left( \sin \sqrt{x} \right)^2 , \text{then}\]

 


Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 


If  \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f


Let A be a finite set. Then, each injective function from A into itself is not surjective.


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


The smallest integer function f(x) = [x] is ____________.


The number of bijective functions from set A to itself when A contains 106 elements is ____________.


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: N → N be defined by f(x) = x2 is ____________.

If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.

(Note P(x, y) is lattice point if x, y ∈ I)

(where [.] denotes greatest integer function)


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×