Advertisements
Advertisements
प्रश्न
if f (x) = `sqrt (x +3) and g (x) = x ^2 + 1` be two real functions, then find fog and gof.
उत्तर
f(x)= `sqrt (x + 3)`
For domain, x + 3≥0
⇒ x≥ −3
Domain of f =[-3, ∞)
Since f is a square root function, range of f =[0, ∞)
f : [−3, ∞) → [0, ∞)
g (x)= x2+1 is a polynomial.
⇒ g : R → R
Computation of fog:
Range of g is not a subset of the domain of f.and domain (fog)={ x: x ∈ domain of g and g (x) ∈ domain of f (x) }
⇒ Domain (fog) = { x : x ∈ R and x2+1∈ [−3, ∞)}
⇒ Domain (fog)={ x : x ∈ R and x2+1 ≥−3 }
⇒ Domain (fog)={x : x ∈ R and x2+4 ≥ 0}
⇒ Domain (fog) = {x : x ∈ R and x ∈ R}
⇒ Domain (fog) = R
fog : R → R
(fog) (x) = f(g (x))
= f (x2+1)
= `sqrt(x^2 +1 +3)`
= ` sqrt (x^2 +4)`
Computation of gof :
Range of f is a subset of the domain of g.
gof : [−3, ∞) → R
⇒ (gof) (x) = g (f (x))
=g ` sqrt (x +3)^2 +1`
= x + 3 + 1
= x + 4
APPEARS IN
संबंधित प्रश्न
Check the injectivity and surjectivity of the following function:
f: R → R given by f(x) = x2
Let f: R → R be defined as f(x) = x4. Choose the correct answer.
Give an example of a function which is not one-one but onto ?
Let A = {−1, 0, 1} and f = {(x, x2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.
If f : R → R be the function defined by f(x) = 4x3 + 7, show that f is a bijection.
Consider f : N → N, g : N → N and h : N → R defined as f(x) = 2x, g(y) = 3y + 4 and h(z) = sin z for all x, y, z ∈ N. Show that ho (gof) = (hog) of.
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Which of the following graphs represents a one-one function?
If f : C → C is defined by f(x) = (x − 2)3, write f−1 (−1).
If f : R → R is defined by f(x) = 10 x − 7, then write f−1 (x).
If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).
What is the range of the function
`f (x) = ([x - 1])/(x -1) ?`
Let the function
\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]
\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]
The function
f : A → B defined by
f (x) = - x2 + 6x - 8 is a bijection if
Let
f : R → R be given by
\[f\left( x \right) = \left[ x^2 \right] + \left[ x + 1 \right] - 3\]
where [x] denotes the greatest integer less than or equal to x. Then, f(x) is
(d) one-one and onto
A function f from the set of natural numbers to integers defined by
`{([n-1]/2," when n is odd" is ),(-n/2,when n is even ) :}`
If \[g \left( f \left( x \right) \right) = \left| \sin x \right| \text{and} f \left( g \left( x \right) \right) = \left( \sin \sqrt{x} \right)^2 , \text{then}\]
Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{ and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]
If \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to
Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.
Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1.
Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f
Let A be a finite set. Then, each injective function from A into itself is not surjective.
Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1
Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.
If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.
The smallest integer function f(x) = [x] is ____________.
The number of bijective functions from set A to itself when A contains 106 elements is ____________.
Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.
Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Ravi wants to know among those relations, how many functions can be formed from B to G?
Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.
Answer the following questions using the above information.
- Let f: N → N be defined by f(x) = x2 is ____________.
If `f : R -> R^+ U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is
The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.
Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.
(Note P(x, y) is lattice point if x, y ∈ I)
(where [.] denotes greatest integer function)
Let a function `f: N rightarrow N` be defined by
f(n) = `{:[(2n",", n = 2"," 4"," 6"," 8","......),(n - 1",", n = 3"," 7"," 11"," 15","......),((n + 1)/2",", n = 1"," 5"," 9"," 13","......):}`
then f is ______.