Advertisements
Advertisements
प्रश्न
if f (x) = `sqrt (x +3) and g (x) = x ^2 + 1` be two real functions, then find fog and gof.
उत्तर
f(x)= `sqrt (x + 3)`
For domain, x + 3≥0
⇒ x≥ −3
Domain of f =[-3, ∞)
Since f is a square root function, range of f =[0, ∞)
f : [−3, ∞) → [0, ∞)
g (x)= x2+1 is a polynomial.
⇒ g : R → R
Computation of fog:
Range of g is not a subset of the domain of f.and domain (fog)={ x: x ∈ domain of g and g (x) ∈ domain of f (x) }
⇒ Domain (fog) = { x : x ∈ R and x2+1∈ [−3, ∞)}
⇒ Domain (fog)={ x : x ∈ R and x2+1 ≥−3 }
⇒ Domain (fog)={x : x ∈ R and x2+4 ≥ 0}
⇒ Domain (fog) = {x : x ∈ R and x ∈ R}
⇒ Domain (fog) = R
fog : R → R
(fog) (x) = f(g (x))
= f (x2+1)
= `sqrt(x^2 +1 +3)`
= ` sqrt (x^2 +4)`
Computation of gof :
Range of f is a subset of the domain of g.
gof : [−3, ∞) → R
⇒ (gof) (x) = g (f (x))
=g ` sqrt (x +3)^2 +1`
= x + 3 + 1
= x + 4
APPEARS IN
संबंधित प्रश्न
Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.
State whether the function f is bijective. Justify your answer.
Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.
Give an example of a function which is neither one-one nor onto ?
Show that the exponential function f : R → R, given by f(x) = ex, is one-one but not onto. What happens if the co-domain is replaced by`R0^+` (set of all positive real numbers)?
Show that the logarithmic function f : R0+ → R given by f (x) loga x ,a> 0 is a bijection.
Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.
Find gof and fog when f : R → R and g : R → R is defined by f(x) = x and g(x) = |x| .
Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.
Find fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → R; g(x) = 3x3 + 1.
Consider f : N → N, g : N → N and h : N → R defined as f(x) = 2x, g(y) = 3y + 4 and h(z) = sin z for all x, y, z ∈ N. Show that ho (gof) = (hog) of.
Find fog and gof if : f (x) = ex g(x) = loge x .
Find fog and gof if : f(x)= x + 1, g (x) = 2x + 3 .
Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.
Let f, g, h be real functions given by f(x) = sin x, g (x) = 2x and h (x) = cos x. Prove that fog = go (fh).
A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).
Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.
Let `f : R - {- 3/5}` → R be a function defined as `f (x) = (2x)/(5x +3).`
f-1 : Range of f → `R -{-3/5}`.
Let A = {1, 2, 3, 4} and B = {a, b} be two sets. Write the total number of onto functions from A to B.
If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).
Let the function
\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]
\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]
Let
f : R → R be given by
\[f\left( x \right) = \left[ x^2 \right] + \left[ x + 1 \right] - 3\]
where [x] denotes the greatest integer less than or equal to x. Then, f(x) is
(d) one-one and onto
The function
The function \[f : R \to R\] defined by
\[f\left( x \right) = 6^x + 6^{|x|}\] is
Mark the correct alternative in the following question:
Let f : R → R be given by f(x) = tanx. Then, f-1(1) is
If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.
Write about strcmp() function.
Let f: R → R be the function defined by f(x) = 4x – 3 ∀ x ∈ R. Then write f–1
The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______
Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}
Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto
Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.
Which of the following functions from Z into Z are bijections?
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- Three friends F1, F2, and F3 exercised their voting right in general election-2019, then which of the following is true?
Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.
Answer the following questions using the above information.
- Let f: N → N be defined by f(x) = x2 is ____________.
A function f: x → y is/are called onto (or surjective) if x under f.
'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:
`x^(log_5x) > 5` implies ______.
Find the domain of sin–1 (x2 – 4).