मराठी

If F (X) = `Sqrt (X +3) And G (X) = X ^2 + 1` Be Two Real Functions, Then Find Fog And Gof. - Mathematics

Advertisements
Advertisements

प्रश्न

if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.

उत्तर

f(x)= `sqrt (x + 3)`

For domain, x + 3≥0

⇒ x≥ −3

Domain of f =[-3, ∞)

Since f is a square root function, range of f =[0, ∞)

f : [−3, ∞) → [0, ∞)

g (x)= x2+1 is a polynomial.

⇒ g : R → R

Computation of fog:

Range of g  is not a subset of the domain of f.and domain (fog)={ x: x ∈ domain of g and g (x) ∈ domain of f (x) }

⇒ Domain (fog) = { x : x ∈ R and  x2+1∈ [−3, ∞)}

⇒ Domain (fog)={ x : x ∈ R and  x2+1 ≥−3 }

⇒ Domain (fog)={x : x ∈ R and  x2+4 ≥ 0}

⇒ Domain (fog) = {x : x ∈ R and x ∈ R}

⇒ Domain (fog) = R

fog : R → R

(fog) (x) = f(g (x))

= f (x2+1)

= `sqrt(x^2 +1 +3)`

= ` sqrt (x^2 +4)`

Computation of gof :

Range of f  is a subset of the domain of g.

gof : [−3, ∞) → R

⇒ (gof) (x) = g (f (x))

=g ` sqrt (x +3)^2  +1`

= x + 3 + 1

= x + 4

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.3 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.3 | Q 10 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.


Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.


Give an example of a function which is neither one-one nor onto ?


Show that the exponential function f : R → R, given by f(x) = ex, is one-one but not onto. What happens if the co-domain is replaced by`R0^+` (set of all positive real numbers)?


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x and g(x) = |x| .


Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


Consider f : N → Ng : N → N and h : N → R defined as f(x) = 2xg(y) = 3y + 4 and h(z) = sin z for all xyz ∈ N. Show that ho (gof) = (hogof.


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


Let fgh be real functions given by f(x) = sin xg (x) = 2x and h (x) = cos x. Prove that fog = go (fh).


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.


Let `f : R - {- 3/5}` → R be a function defined as `f  (x) = (2x)/(5x +3).` 

f-1 : Range of f → `R -{-3/5}`.


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


Let

f : R → R be given by

\[f\left( x \right) = \left[ x^2 \right] + \left[ x + 1 \right] - 3\]

where [x] denotes the greatest integer less than or equal to x. Then, f(x) is
 


(d) one-one and onto


The function

\[f : R \to R, f\left( x \right) = x^2\]
 

The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.


Write about strcmp() function.


Let f: R → R be the function defined by f(x) = 4x – 3 ∀ x ∈ R. Then write f–1 


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.


Which of the following functions from Z into Z are bijections?


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Three friends F1, F2, and F3 exercised their voting right in general election-2019, then which of the following is true?

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: N → N be defined by f(x) = x2 is ____________.

A function f: x → y is/are called onto (or surjective) if x under f.


'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:


`x^(log_5x) > 5` implies ______.


Find the domain of sin–1 (x2 – 4).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×