→ R Be a Function Defined As F(X) = `(4x)/(3x +4)` . Show that F : R - `{-4/3}`→ Rang (F) is One-one and Onto. Hence, Find F -1. - Mathematics | Shaalaa.com" />→ R Be a Function Defined As F(X) = `(4x)/(3x +4)` . Show that F : R - `{-4/3}`→ Rang (F) is One-one and Onto. Hence, Find F -1. " />→ R Be a Function Defined As F(X) = `(4x)/(3x +4)` . Show that F : R - `{-4/3}`→ Rang (F) is One-one and Onto. Hence, Find F -1., Types of Functions" />
मराठी

Let F : R `{- 4/3} `- 43 →">→ R Be a Function Defined As F(X) = `(4x)/(3x +4)` . Show that F : R - `{-4/3}`→ Rang (F) is One-one and Onto. Hence, Find F -1. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.

उत्तर

The function f : R - `{-4/3}→ R - {4/3}` is given by f (x) = `(4x)/(3x +4).` Injectivity: Let `x,y in R - {-4/3} `be such that f (x) = f (y)

⇒ `(4x)/(3x + 4)= (4x)/(3y+4)`

⇒ 4x (3y +4) = 4y (3x +4)

⇒ 12xy + 16x = 12xy +16y

⇒ 16x = 16y

⇒ x = y

Hence, f is one-one function.
Surjectivity: Let y be an arbitrary element of `R - {4/3}.` Then, 

f(x) = y

⇒ `(4x)/(3x+4) = y`

⇒ 4x = 3xy +4y 

⇒ 4x - 3xy = 4y

⇒ `x = (4y)/(4-3y)`

As `y ∈ R -{4/3} , (4y)/(4-3y) in R.`

Also , `(4y)/(4 - 3y) ≠ -4/3` because `(4y)/(4-3y) = - 4/3 ⇒ 12y = -16 +12y ⇒ 0 = -16,`which is not posssible.

Thus,

`x = (4y)/(4-3y) in R - {- 4/3}` sich  that

`f (x) = f ((4x)/(3x +4))= (4((4y)/(4  -3y)))/(3((4y)/(4  -3y))+4) = (16y)/(12y+ 16 - 12y)= (16y)/16` = y , so every element in `R - {4/3} ` has pre-image in `R- {-4/3}.`

Hence, f is onto.
Now,

`x = (4y)/(4 -3y)`

Replacing x by f-1 and y by x, we have

`f^-1 (x) = (4x)/(4 - 3x)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.4 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.4 | Q 16 | पृष्ठ ६९

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x3


Prove that the greatest integer function f: → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.


Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x  = 0), (-1, if x < 0):}`  is neither one-one nor onto


Show that the function f: R → R given by f(x) = x3 is injective.


Given examples of two functions fN → N and gN → N such that gof is onto but is not onto.

(Hint: Consider f(x) = x + 1 and `g(x) = {(x-1, ifx >1),(1, if x = 1):}`


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


If f : R → R be the function defined by f(x) = 4x3 + 7, show that f is a bijection.


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.


Let f : R → R and g : R → R be defined by f(x) = + 1 and (x) = x − 1. Show that fog = gof = IR.


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


State with reason whether the following functions have inverse :

g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}


Let \[f : \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \to R\]  be a function defined by f(x) = cos [x]. Write range (f).


Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



\[f : Z \to Z\]  be given by

 ` f (x) = {(x/2, ", if  x is even" ) ,(0 , ", if  x  is  odd "):}`

Then,  f is


Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one.


Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


The smallest integer function f(x) = [x] is ____________.


Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • The function f: R → R defined by f(x) = x − 4 is ____________.

Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.


Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals ______.


For x ∈ R, x ≠ 0, let f0(x) = `1/(1 - x)` and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of `f_100(3) + f_1(2/3) + f_2(3/2)` is equal to ______.


Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.



The given function f : R → R is not ‘onto’ function. Give reason.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×