Advertisements
Advertisements
प्रश्न
\[f : Z \to Z\] be given by
` f (x) = {(x/2, ", if x is even" ) ,(0 , ", if x is odd "):}`
Then, f is
पर्याय
onto but not one-one
one-one but not onto
one-one and onto
neither one-one nor onto
उत्तर
Injectivity:
Let x and y be two elements in the domain (Z), such that
LaTeX
\[f\left( x \right) = f\left( y \right)\]
\[Case-1: \text{Let both x andybe even}.\]
\[\text{Then},\]
\[f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow \frac{x}{2} = \frac{y}{2}\]
\[ \Rightarrow x = y\]
\[Case-2: \text{Let bothx andybe odd}.\]
\[\text{Then},\]
\[f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow 0 = 0\]
\[\text{Here, we cannot determine whether } x = y.\] So, f is not one-one.
Surjectivity:
Let y be an element in the co-domain (Z), such that
\[\text{Co-domain of f} = Z = \left\{ 0, \pm 1, \pm 2, \pm 3, \pm 4, . . . \right\} \]
\[\text{Range of f} = \left\{ 0, 0, \frac{\pm 2}{2}, 0, \frac{\pm 4}{2} , . . . \right\} = \left\{ 0, \pm 1, \pm 2, . . . \right\} \]
\[ \Rightarrow \text{Co-domain of f} = \text{Range of f}\]
\[\Rightarrow\] f is onto.
So, the answer is (a).
APPEARS IN
संबंधित प्रश्न
Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?
Check the injectivity and surjectivity of the following function:
f: R → R given by f(x) = x2
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.
Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.
Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.
State whether the function f is bijective. Justify your answer.
Let S = {a, b, c} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.
F = {(a, 2), (b, 1), (c, 1)}
Which of the following functions from A to B are one-one and onto ?
f3 = {(a, x), (b, x), (c, z), (d, z)} ; A = {a, b, c, d,}, B = {x, y, z}.
If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.
Consider f : N → N, g : N → N and h : N → R defined as f(x) = 2x, g(y) = 3y + 4 and h(z) = sin z for all x, y, z ∈ N. Show that ho (gof) = (hog) of.
Find fog and gof if : f (x) = x2 g(x) = cos x .
Find fog and gof if : f (x) = x+1, g(x) = `e^x`
.
Find fog and gof if : f(x)= x + 1, g (x) = 2x + 3 .
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
If f : R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1 (5).
If f : A → A, g : A → A are two bijections, then prove that fog is an injection ?
Write the total number of one-one functions from set A = {1, 2, 3, 4} to set B = {a, b, c}.
Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.
Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f . [NCERT EXEMPLAR]
If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = \[\alpha x + \beta\] then find the values of \[\alpha\] and \[ \beta\] . [NCERT EXEMPLAR]
\[f : R \to R \text{given by} f\left( x \right) = x + \sqrt{x^2} \text{ is }\]
A function f from the set of natural numbers to the set of integers defined by
\[f\left( n \right)\begin{cases}\frac{n - 1}{2}, & \text{when n is odd} \\ - \frac{n}{2}, & \text{when n is even}\end{cases}\]
Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{ and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]
A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.
If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1
Let A be a finite set. Then, each injective function from A into itself is not surjective.
If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))
Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.
The number of bijective functions from set A to itself when A contains 106 elements is ____________.
Let f : R → R be defind by f(x) = `1/"x" AA "x" in "R".` Then f is ____________.
Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Let R: B → G be defined by R = { (b1,g1), (b2,g2),(b3,g1)}, then R is ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- The function f: R → R defined by f(x) = x − 4 is ____________.
Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if "n is even"):}` Is the function injective? Justify your answer.
Consider a set containing function A= {cos–1cosx, sin(sin–1x), sinx((sinx)2 – 1), etan{x}, `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}. B, C, D, are subsets of A, such that B contains periodic functions, C contains even functions, D contains odd functions then the value of n(B ∩ C) + n(B ∩ D) is ______ where {.} denotes the fractional part of functions)
Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.
Let x is a real number such that are functions involved are well defined then the value of `lim_(t→0)[max{(sin^-1 x/3 + cos^-1 x/3)^2, min(x^2 + 4x + 7)}]((sin^-1t)/t)` where [.] is greatest integer function and all other brackets are usual brackets.