Advertisements
Advertisements
प्रश्न
Find fog and gof if : f (x) = x+1, g(x) =
.
उत्तर
f (x) = x+1, g(x) = ex
f : R→R ; g : R → [ 1, ∞)
Computing fog :
Clearly, range of g is a subset of domain of f.
⇒ fog : R→R
(fog) (x) = f (g (x))
= f (ex)
= ex+1
Computing gof:
Clearly, range of f is a subset of domain of g.
⇒ fog : R→R
(gof) (x) = g (f (x))
= g (x+1)
= ex+1
APPEARS IN
संबंधित प्रश्न
Check the injectivity and surjectivity of the following function:
f: N → N given by f(x) = x3
Show that the Signum Function f: R → R, given by
Let f: R → R be defined as f(x) = x4. Choose the correct answer.
Give an example of a function which is one-one but not onto ?
Classify the following function as injection, surjection or bijection : f : Z → Z given by f(x) = x2
Classify the following function as injection, surjection or bijection :
f : Z → Z, defined by f(x) = x − 5
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = x3 + 1
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = sin2x + cos2x
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 3 − 4x
Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and g(x) = x2 + 5 .
Find fog and gof if : f(x) = sin−1 x, g(x) = x2
if f (x) =
Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.
Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with
Let f be a function from R to R, such that f(x) = cos (x + 2). Is f invertible? Justify your answer.
Let
Let
Let f : R → R+ be defined by f(x) = ax, a > 0 and a ≠ 1. Write f−1 (x).
Let A = {1, 2, 3, 4} and B = {a, b} be two sets. Write the total number of onto functions from A to B.
What is the range of the function
If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).
Let f, g : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x
∈ R, respectively. Then, find gof. [NCERT EXEMPLAR]
The function
Let
The inverse of the function
Let
Let [x] denote the greatest integer less than or equal to x. If
Let
For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is injective. Then both f and g are injective functions.
Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}
Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}
Let f : R → R be defind by f(x) =
Which of the following functions from Z into Z is bijective?
If f: R→R is a function defined by f(x) =
Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 =
Let x is a real number such that are functions involved are well defined then the value of
Let f(x) be a polynomial function of degree 6 such that
Assertion (A): f(x) has a minimum at x = 1.
Reason (R): When