मराठी

Find Fog And Gof If : F (X) = X+1, G(X) = Ex. - Mathematics

Advertisements
Advertisements

प्रश्न

Find fog and gof  if : f (x) = x+1, g(x) = ex

.

बेरीज

उत्तर

f (x) = x+1, g(x) = ex

f : R→R ; g : R → [ 1, ∞)

Computing fog :

Clearly, range of g is a subset of domain of f.

⇒ fog : R→R

(fog) (x) = f (g (x))

= f (ex)

= ex+1

Computing gof:

Clearly, range of f is a subset of domain of g.

⇒ fog : R→R

(gof) (x) = g (f (x))

= g (x+1)

= ex+1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.3 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.3 | Q 1.4 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Check the injectivity and surjectivity of the following function:

f: → N given by f(x) = x3


Show that the Signum Function f: R → R, given by f(x)={1ifx>00ifx =0-1ifx<0  is neither one-one nor onto


Let f: R → R be defined as f(x) = x4. Choose the correct answer.


Give an example of a function which is one-one but not onto ?


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x2


Classify the following function as injection, surjection or bijection :

 f : Z → Z, defined by f(x) = x − 5 


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = sin2x + cos2x


Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and  g(x) = x2 + 5 .


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


if f (x) = x+3and g(x)=x2+1 be two real functions, then find fog and gof.


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with f-1(x)=x+6-13.


Let f be a function from R to R, such that f(x) = cos (x + 2). Is f invertible? Justify your answer.


Let f:(π2,π2)R  be a function defined by f(x) = cos [x]. Write range (f).


Let f:[π2,π2] A be defined by f(x) = sin x. If f is a bijection, write set A.


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


What is the range of the function

f(x)=[x-1]x-1?


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


Let fg : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x

∈ R, respectively. Then, find gof.  [NCERT EXEMPLAR]


f:RR is defined by

f(x)=ex2ex2ex2+ex2is

 


The function

f:RR,f(x)=x2
 

Let  f(x)=x2andg(x)=2x Then, the solution set of the equation

fog(x)=gof(x) is 



The inverse of the function

f:R{xR:x<1} given by

f(x)=exexex+ex is 

 


Let

A={xR:x1}andf:AA be defined as

f(x)=x(2x) Then,

f1(x) is


Let [x] denote the greatest integer less than or equal to x. If f(x)=sin1x,g(x)=[x2] and h(x)=2x,12x12

 


Let 
f:RR  be given by f(x)=x23 Then, f1 is given by 

 


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is injective. Then both f and g are injective functions.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let f : R → R be defind by f(x) = 1x  xR. Then f is ____________.


Which of the following functions from Z into Z is bijective?


If f: R→R is a function defined by f(x) = [x-1]cos(2x-12)π, where [ ] denotes the greatest integer function, then f is ______.


Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = 08f(x)dx and I2 = -13f(x)dx, then the value of I1 + 2I2 is equal to ______.


Let x is a real number such that are functions involved are well defined then the value of limt0[max{(sin-1 x3+cos-1 x3)2,min(x2+4x+7)}](sin-1tt) where [.] is greatest integer function and all other brackets are usual brackets.


Let f(x) be a polynomial function of degree 6 such that ddx(f(x)) = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When ddx(f(x))<0, x(a-h,a) and ddx(f(x))>0, x(a,a+h); where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.