मराठी

Let F ( X ) = X 2 a N D G ( X ) = 2 X Then, the Solution Set of the Equation F O G ( X ) = G O F ( X ) is (A) R (B) {0} (C) {0, 2} (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 


पर्याय

  • R

  • {0}

  • {0, 2}

  • none of these

MCQ

उत्तर

\[\text{Since}\left( \text{fog} \right)\left( x \right) = \left( \text{gof} \right)\left( x \right), \] 
\[ f\left( g\left( x \right) \right) = g\left( f\left( x \right) \right)\] 
\[ \Rightarrow f\left( 2^x \right) = g\left( x^2 \right)\] 
\[ \Rightarrow \left( 2^x \right)^2 = 2^{x^2} \] 
\[ \Rightarrow 2^{2x} = 2^{x^2} \] 
\[ \Rightarrow x^2 = 2x\] 
\[ \Rightarrow x^2 - 2x = 0\] 
\[ \Rightarrow x\left( x - 2 \right) = 0\] 
\[ \Rightarrow x = 0, 2\] 
\[ \Rightarrow x \in \left\{ 0, 2 \right\}\] 

So, the answer is (c) .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.6 [पृष्ठ ७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.6 | Q 30 | पृष्ठ ७७

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x3


Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x  = 0), (-1, if x < 0):}`  is neither one-one nor onto


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f: → R defined by f(x) = 1 + x2


Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : `f (x) = x/2`


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


Give examples of two functions f : N → N and g : N → N, such that gof is onto but f is not onto.


Give examples of two functions f : N → Z and g : Z → Z, such that gof is injective but gis not injective.


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.


Which one of the following graphs represents a function?


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f .   [NCERT EXEMPLAR]


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



Let 

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is 

 


Let

\[f : R - \left\{ n \right\} \to R\]

\[f\left( x \right) = \frac{x - m}{x - n}, \text{where} \ m \neq n .\] Then,
 

If \[f : R \to R is given by f\left( x \right) = 3x - 5, then f^{- 1} \left( x \right)\] 

 


Show that the function f: R → R defined by f(x) = `x/(x^2 + 1)`, ∀ ∈ + R , is neither one-one nor onto


Let D be the domain of the real valued function f defined by f(x) = `sqrt(25 - x^2)`. Then, write D


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Let C be the set of complex numbers. Prove that the mapping f: C → R given by f(z) = |z|, ∀ z ∈ C, is neither one-one nor onto.


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.


Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


Let g(x) = x2 – 4x – 5, then ____________.


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Let f: R → R defined by f(x) = x4. Choose the correct answer


Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


If f : R `rightarrow` R is defined by `f(x) = (2x - 7)/4`, show that f(x) is one-one and onto.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×