मराठी

Let F : R → R Be the Function Defined By F(X) = 4x − 3 for All X ∈ R Then Write F . [Ncert Exemplar] - Mathematics

Advertisements
Advertisements

प्रश्न

Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f .   [NCERT EXEMPLAR]

उत्तर

We have,
f : R → R is the function defined by f(x) = 4x −3 for all x ∈ R

\[\text{Let f}\left( x \right) = y . \text{Then}, \]
\[y = 4x - 3\]
\[ \Rightarrow 4x = y + 3\]
\[ \Rightarrow x = \frac{y + 3}{4}\]
\[So, f^{- 1} \left( y \right) = \frac{y + 3}{4}\]
\[or, f^{- 1} \left( x \right) = \frac{x + 3}{4}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.5 | Q 38 | पृष्ठ ७४

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


 Which of the following functions from A to B are one-one and onto ?  

f3 = {(ax), (bx), (cz), (dz)} ; A = {abcd,}, B = {xyz}. 


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = |x|


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Suppose f1 and f2 are non-zero one-one functions from R to R. Is `f_1 / f^2` necessarily one - one? Justify your answer. Here,`f_1/f_2 : R → R   is   given   by   (f_1/f_2) (x) = (f_1(x))/(f_2 (x))  for all  x in R .`


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = 2x + x2 and  g(x) = x3


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


Find fog and gof  if : f (x) = |x|, g (x) = sin x .


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


 If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).


Find f −1 if it exists : f : A → B, where A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2


Let A and B be two sets, each with a finite number of elements. Assume that there is an injective map from A to B and that there is an injective map from B to A. Prove that there is a bijection from A to B.


 If f : R → R be defined by f(x) = x4, write f−1 (1).

Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.


Write the domain of the real function

`f (x) = sqrtx - [x] .`


If the mapping f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3}, given by f = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)}, then write fog. [NCERT EXEMPLAR]


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


Let f be an injective map with domain {xyz} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.

\[f\left( x \right) = 1, f\left( y \right) \neq 1, f\left( z \right) \neq 2 .\]

The value of

\[f^{- 1} \left( 1 \right)\] is 

 


The  function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is

 


Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 


Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is


Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by \[f\left( x \right) = \frac{x - 2}{x - 3}, \forall x \in A\] Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)


Write about strlen() function.


If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1


Show that the function f: R → R defined by f(x) = `x/(x^2 + 1)`, ∀ ∈ + R , is neither one-one nor onto


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


A function f: x → y is said to be one – one (or injective) if:


Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×