मराठी

Suppose F1 And F2 Are Non-zero One-one Functions From R To R. is `F_1 / F^2` Necessarily One - One? Justify Your Answer. Here,`F_1/F_2 : R → R Is Given By (F_1/F_2) (X) = - Mathematics

Advertisements
Advertisements

प्रश्न

Suppose f1 and f2 are non-zero one-one functions from R to R. Is `f_1 / f^2` necessarily one - one? Justify your answer. Here,`f_1/f_2 : R → R   is   given   by   (f_1/f_2) (x) = (f_1(x))/(f_2 (x))  for all  x in R .`

बेरीज

उत्तर

We know that f1: R → R, given by f1(x)=x3 and f2(x)=x are one-one.
Injectivity of f1:

Let x and y be two elements in the domain R, such that

f1 (x) = f2 (y) ⇒ x3= y ⇒ x = `3 sqrty in R`

So, f1 is one-one.

Injectivity of f2:
Let x and y be two elements in the domain R, such that

f2(x) = f2 (y) ⇒ x= y ⇒ x∈R.

So, f2  is one-one

  proving `f_1 / f_2` is not one - one :

Given that `f_1/f_2 (x) = f_1(x)/f_2(x) = x^2/x = x^2`

Let x and y be two elements in the domain R, such that

`f_1/(f_2) (x) = f_1/(f_2) (y)`

⇒ x2= y2

⇒ x = ±y

So, `f_1/f_2` is not one - one

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.1 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.1 | Q 20 | पृष्ठ ३२

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Check the injectivity and surjectivity of the following function:

f: → N given by f(x) = x3


Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.


Let f: R → R be defined as f(x) = 3x. Choose the correct answer.


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 2), (b, 1), (c, 1)}


Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

f : Q − {3} → Q, defined by `f (x) = (2x +3)/(x-3)`


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


Let A = {1, 2, 3}. Write all one-one from A to itself.


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and  g(x) = x2 + 5 .


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


State with reason whether the following functions have inverse :

g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}


Consider f : R → R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with inverse f−1 of f given by f−1 `(x)= sqrt (x-4)` where R+ is the set of all non-negative real numbers.


Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.

                    [CBSE 2012, 2014]


Which of the following graphs represents a one-one function?


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 


Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 


Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is


Show that the function f: R → R defined by f(x) = `x/(x^2 + 1)`, ∀ ∈ + R , is neither one-one nor onto


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


The smallest integer function f(x) = [x] is ____________.


If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


The domain of the function `cos^-1((2sin^-1(1/(4x^2-1)))/π)` is ______.


Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


The trigonometric equation tan–1x = 3tan–1 a has solution for ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×