मराठी

Find Fog And Gof If : F(X) = X2 + 2 , G (X) = 1 − `1/ (1-x)`. - Mathematics

Advertisements
Advertisements

प्रश्न

Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.

बेरीज

उत्तर

f (x) = x2+ 2

f : R → [ 2, ∞ )

 g (x) = 1 `- 1/(1-x)`

For domain of g : 1− x ≠ 0 

⇒ x ≠ 1

⇒ Domain of g = R−{1}

g (x )= `1 - 1/(1-x) = (1-x-1)/(1-x) = (-x)/(1-x)`

For range of g :

`y = (- x)/ (1-x)`

⇒ y − xy = − x

⇒ y = xy − x

⇒ y = x (y−1)

⇒ `x = y/(y-1)`

Range of g =R−{1}

So, g : R−{1}→R−{1}

Computing fog : 

Clearly, the range of g is a subset of the domain of f.

⇒ fog : R − {1}→ R

(fog) (x) = f (g (x))

`= f ((-x)/ (x-1) )`

`= ((-x)/ (x-1))^2 + 2`

`=(x^2 + 2x^2 +2-4x)/(1-x)^2`

`= (3x^2-4x +2 )/ (1-x)^2`

Computing gof :

Clearly, the range of f is a subset of the domain of g.

⇒ gof : R→R

(gof) (x) = g (f (x))

= g ( x2 + 2 )

`= 1- 1/(1-(x^2 + 2))`

`= - 1/(1-(x^2 + 2))`

`= (x^2 + 2)/(x^2 + 1)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.3 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.3 | Q 1.9 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 3), (b, 2), (c, 1)} 


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 2), (b, 1), (c, 1)}


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = |x|


Classify the following function as injection, surjection or bijection :

 f : Z → Z, defined by f(x) = x − 5 


Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1


If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.


Give examples of two surjective functions f1 and f2 from Z to Z such that f1 + f2 is not surjective.


Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.


Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Consider f : R → R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with inverse f−1 of f given by f−1 `(x)= sqrt (x-4)` where R+ is the set of all non-negative real numbers.


Which of the following graphs represents a one-one function?


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


If f : {5, 6} → {2, 3} and g : {2, 3} → {5, 6} are given by f = {(5, 2), (6, 3)} and g = {(2, 5), (3, 6)}, then find fog.    [NCERT EXEMPLAR]


Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)}                                                                                                        [NCERT EXEMPLAR]


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


Mark the correct alternative in the following question:
Let f :  \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\]  R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,

 


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Which of the following functions from Z into Z are bijections?


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.


Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: N → N be defined by f(x) = x2 is ____________.

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • The function f: Z → Z defined by f(x) = x2 is ____________.

If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n"  "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f: S `rightarrow` S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ______.


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×