मराठी

A Function F from the Set of Natural Numbers to Integers Defined by (A) Neither One-one Nor onto (B) One-one but Not onto (C) onto but Not One-one (D) One-one and onto Both - Mathematics

Advertisements
Advertisements

प्रश्न

A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 

पर्याय

  • neither one-one nor onto

  • one-one but not onto

  • onto but not one-one

  • one-one and onto both

MCQ

उत्तर

one-one and onto both
Injectivity:
Let x and y be any two elements in the domain (N).

\[\text{Case}-1: \text{Bothxandyare even}.\]
\[\text{Let}f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow \frac{- x}{2} = \frac{- y}{2}\]
\[ \Rightarrow - x = - y\]
\[ \Rightarrow x = y\]
\[\text{Case}-2: \text{Bothxandyare odd}.\]
\[Letf\left( x \right) = f\left( y \right)\]
\[ \Rightarrow \frac{x - 1}{2} = \frac{y - 1}{2}\]
\[ \Rightarrow x - 1 = y - 1\]
\[ \Rightarrow x = y\]
\[Case-3:\text{Let x be even andybe odd}.\]
\[\text{Then},f\left( x \right) = \frac{- x}{2}\text{and}f\left( y \right) = \frac{y - 1}{2}\]
\[\text{Then, clearly}\]
\[x \neq y \]
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\]
\[\text{From all the cases,f is one-one}.\]

Surjectivity:

\[\text{Co-domain of f} = Z = \left\{ . . . , - 3, - 2, - 1, 0, 1, 2, 3, . . . . \right\}\]
\[\text{Range of f } = \left\{ . . . , \frac{- 3 - 1}{2}, \frac{- \left( - 2 \right)}{2}, \frac{- 1 - 1}{2}, \frac{0}{2}, \frac{1 - 1}{2}, \frac{- 2}{2}, \frac{3 - 1}{2}, . . . \right\}\]
\[ \Rightarrow \text{Range of f} = \left\{ . . . , - 2, 1, - 1, 0, 0, - 1, 1, . . . \right\}\]
\[ \Rightarrow \text{Range of f} = \left\{ . . . , - 2, - 1, 0, 1, 2, . . . . \right\}\]
\[ \Rightarrow \text{Co-domain of f} = \text{Range of f}\]

⇒ f is onto.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.6 [पृष्ठ ७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.6 | Q 12 | पृष्ठ ७६

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 2), (b, 1), (c, 1)}


Give an example of a function which is not one-one but onto ?


 Which of the following functions from A to B are one-one and onto ?  

f3 = {(ax), (bx), (cz), (dz)} ; A = {abcd,}, B = {xyz}. 


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x2


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = `x/(x^2 +1)`


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Find fog and gof  if : f (x) = x+1, g(x) = `e^x`

.


Let fgh be real functions given by f(x) = sin xg (x) = 2x and h (x) = cos x. Prove that fog = go (fh).


Let  f  be any real function and let g be a function given by g(x) = 2x. Prove that gof = f + f.


Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


If the mapping f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3}, given by f = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)}, then write fog. [NCERT EXEMPLAR]


\[f : R \to R \text{given by} f\left( x \right) = x + \sqrt{x^2} \text{ is }\]

 

 


The function f : R → R defined by

`f (x) = 2^x + 2^(|x|)` is 

 


If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =


The  function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is

 


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] Then, for what value of α is \[f \left( f\left( x \right) \right) = x?\]

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is injective. Then both f and g are injective functions.


The function f : R → R given by f(x) = x3 – 1 is ____________.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Three friends F1, F2, and F3 exercised their voting right in general election-2019, then which of the following is true?

An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible?

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: N → N be defined by f(x) = x2 is ____________.

If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


Let f: R→R be defined as f(x) = 2x – 1 and g: R – {1}→R be defined as g(x) = `(x - 1/2)/(x - 1)`. Then the composition function f (g(x)) is ______.


The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


`x^(log_5x) > 5` implies ______.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.

REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×