मराठी

Write the Domain of the Real Function F(X)=Sqrt([X]-X). - Mathematics

Advertisements
Advertisements

प्रश्न

Write the domain of the real function

f(x)=[x]-x.

उत्तर

[x] is the greatest integer function.

[x]x,xR
[x]x0,xR
[x]x does not exist for anyxR.
Domain=ϕ

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.5 | Q 29 | पृष्ठ ७४

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f : → R defined by f(x) = 3 − 4x


Let f: R → R be defined as f(x) = 3x. Choose the correct answer.


Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = 2|x-12|-1,xA. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

f : Q − {3} → Q, defined by f(x)=2x+3x-3


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


Find fog and gof  if : f(x) = x2 + 2 , g (x) = 1 − 11-x.


Let f : R {-43}- 43 →">→ R be a function defined as f(x) = 4x3x+4 . Show that f : R - {-43}→ Rang (f) is one-one and onto. Hence, find f -1.


If f : R → (0, 2) defined by f(x)=ex-exex+e-x+1is invertible , find f-1.


If f : A → Ag : A → A are two bijections, then prove that fog is a surjection ?


If f : C → C is defined by f(x) = (x − 2)3, write f−1 (−1).


Write whether f : R → R, given by f(x)=x+x2 is one-one, many-one, onto or into.


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)}                                                                                                        [NCERT EXEMPLAR]


Let fg : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x

∈ R, respectively. Then, find gof.  [NCERT EXEMPLAR]


If f(x) = 4 −( x - 7)3 then write f-1 (x).


f:ZZ  be given by

 f(x)={x2, if  x is even0, if  x  is  odd

Then,  f is


If  f:R(1,1) is defined by

f(x)=x|x|1+x2, then f1(x) equals

 


If  g(x)=x2+x2 and12gof(x)=2x25x+2 is equal to


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by f(x)=x2x3,xA Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one.


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

k(x) = x2 


Let f: R → R be defined by f(x) = 1x ∀ x ∈ R. Then f is ______.


Let f : R R be a function defined by f(x) = x3 + 4, then f is ______.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?

Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


Let f(x) be a polynomial function of degree 6 such that ddx(f(x)) = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When ddx(f(x))<0, x(a-h,a) and ddx(f(x))>0, x(a,a+h); where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.