Advertisements
Advertisements
प्रश्न
Write the domain of the real function
उत्तर
[x] is the greatest integer function.
APPEARS IN
संबंधित प्रश्न
Check the injectivity and surjectivity of the following function:
f: R → R given by f(x) = x2
Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.
f : R → R defined by f(x) = 3 − 4x
Let f: R → R be defined as f(x) = 3x. Choose the correct answer.
Let f: R → R be defined as f(x) = 10x + 7. Find the function g: R → R such that g o f = f o g = 1R.
Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) =
Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).
Which of the following functions from A to B are one-one and onto?
f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}
Let A = {−1, 0, 1} and f = {(x, x2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = x3 + 1
Classify the following function as injection, surjection or bijection :
f : Q − {3} → Q, defined by
Find fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → R; g(x) = 3x3 + 1.
If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.
Find fog and gof if : f(x) =
Let f : R
If f : R → (0, 2) defined by
If f : A → A, g : A → A are two bijections, then prove that fog is a surjection ?
If f : C → C is defined by f(x) = (x − 2)3, write f−1 (−1).
Write whether f : R → R, given by
If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).
If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).
Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)} [NCERT EXEMPLAR]
Let f, g : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x
∈ R, respectively. Then, find gof. [NCERT EXEMPLAR]
If f(x) = 4 −( x - 7)3 then write f-1 (x).
Then, f is
If
If
Mark the correct alternative in the following question:
If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is
Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by
(i) x, if f−1(x) = 4
(ii) f−1(7)
Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one.
Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.
Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}
Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:
k(x) = x2
Let f: R → R be defined by f(x) =
Let f : R
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?
Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:
Write the domain and range (principle value branch) of the following functions:
f(x) = tan–1 x.
Let f(x) be a polynomial function of degree 6 such that
Assertion (A): f(x) has a minimum at x = 1.
Reason (R): When