English

Write the Domain of the Real Function `F (X) = Sqrt([X] - X) .` - Mathematics

Advertisements
Advertisements

Question

Write the domain of the real function

`f (x) = sqrt([x] - x) .`

Solution

[x] is the greatest integer function.

\[\left[ x \right] \leq x, \forall x \in R\]
\[ \Rightarrow \left[ x \right] - x \leq 0, \forall x \in R\]
\[ \Rightarrow \sqrt{\left[ x \right] - x} \text{ does not exist for anyx} \in R . \]
\[\text{Domain} =\phi\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.5 [Page 74]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.5 | Q 29 | Page 74

RELATED QUESTIONS

Given examples of two functions fN → N and gN → N such that gof is onto but is not onto.

(Hint: Consider f(x) = x + 1 and `g(x) = {(x-1, ifx >1),(1, if x = 1):}`


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = sin2x + cos2x


Set of ordered pair of a function ? If so, examine whether the mapping is injective or surjective :{(ab) : a is a person, b is an ancestor of a


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Find gof and fog when f : R → R and g : R → R is  defined by  f(x) = 8x3 and  g(x) = x1/3.


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


State with reason whether the following functions have inverse :

g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}


Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.


What is the range of the function

`f (x) = ([x - 1])/(x -1) ?`


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.


If f(x) = 4 −( x - 7)3 then write f-1 (x).


\[f : R \to R \text{given by} f\left( x \right) = x + \sqrt{x^2} \text{ is }\]

 

 


The function f : R → R defined by

`f (x) = 2^x + 2^(|x|)` is 

 


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


\[f : R \to R\] is defined by

\[f\left( x \right) = \frac{e^{x^2} - e^{- x^2}}{e^{x^2 + e^{- x^2}}} is\]

 


 Let
\[g\left( x \right) = 1 + x - \left[ x \right] \text{and} f\left( x \right) = \begin{cases}- 1, & x < 0 \\ 0, & x = 0, \\ 1, & x > 0\end{cases}\] where [x] denotes the greatest integer less than or equal to x. Then for all \[x, f \left( g \left( x \right) \right)\] is equal to


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] Then, for what value of α is \[f \left( f\left( x \right) \right) = x?\]

 


Write about strlen() function.


If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


Let f : R → R be a function defined by f(x) `= ("e"^abs"x" - "e"^-"x")/("e"^"x" + "e"^-"x")` then f(x) is


Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.

If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.


`x^(log_5x) > 5` implies ______.


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×