English

If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x)) - Mathematics

Advertisements
Advertisements

Question

If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))

Sum

Solution

Given that f(x)= x2 – 3x + 2

f(f(x) = f(x2 – 3x + 2)

= (x2 – 3x + 2)2 – 3(x2 – 3x + 2) + 2

= x4 + 9x2 + 4 – 6x3 – 12x + 4x2 – 3x2 + 9x – 6 + 2

= x4 + 10x2 – 6x3 – 3x

f(f(x)) = x4 – 6x3 + 10x2 – 3x

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations And Functions - Exercise [Page 11]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 1 Relations And Functions
Exercise | Q 6 | Page 11

RELATED QUESTIONS

Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Show that the function f: R → R given by f(x) = x3 is injective.


Given examples of two functions fN → N and gN → N such that gof is onto but is not onto.

(Hint: Consider f(x) = x + 1 and `g(x) = {(x-1, ifx >1),(1, if x = 1):}`


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 2), (b, 1), (c, 1)}


If the function `f(x) = sqrt(2x - 3)` is invertible then find its inverse. Hence prove that `(fof^(-1))(x) = x`


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Let A = {1, 2, 3}. Write all one-one from A to itself.


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x and g(x) = |x| .


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


Find fog and gof  if : f (x) = x+1, g(x) = `e^x`

.


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =


If the function

\[f : R \to R\]  be such that

\[f\left( x \right) = x - \left[ x \right]\] where [x] denotes the greatest integer less than or equal to x, then \[f^{- 1} \left( x \right)\]

 


 Let
\[g\left( x \right) = 1 + x - \left[ x \right] \text{and} f\left( x \right) = \begin{cases}- 1, & x < 0 \\ 0, & x = 0, \\ 1, & x > 0\end{cases}\] where [x] denotes the greatest integer less than or equal to x. Then for all \[x, f \left( g \left( x \right) \right)\] is equal to


The distinct linear functions that map [−1, 1] onto [0, 2] are


Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


Write about strcmp() function.


Let C be the set of complex numbers. Prove that the mapping f: C → R given by f(z) = |z|, ∀ z ∈ C, is neither one-one nor onto.


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: R → R be defined by f(x) = x2 is:

Let f: R → R defined by f(x) = x4. Choose the correct answer


Let f: R → R defined by f(x) = 3x. Choose the correct answer


A function f: x → y is said to be one – one (or injective) if:


`x^(log_5x) > 5` implies ______.


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.



The given function f : R → R is not ‘onto’ function. Give reason.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×