Advertisements
Advertisements
Question
Let
\[f : [2, \infty ) \to X\] be defined by
\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =
Options
\[[2, \infty )\]
\[( - \infty , 2]\]
\[( - \infty , 4]\]
\[[4, \infty )\]
Solution
Since f is invertible, range of f = co domain of f = X
So, we need to find the range of f to find X.
For finding the range, let
\[f\left( x \right) = y\]
\[ \Rightarrow 4x - x^2 = y\]
\[ \Rightarrow x^2 - 4x = - y\]
\[ \Rightarrow x^2 - 4x + 4 = 4 - y\]
\[ \Rightarrow \left( x - 2 \right)^2 = 4 - y\]
\[ \Rightarrow x - 2 = \pm \sqrt{4 - y}\]
\[ \Rightarrow x = 2 \pm \sqrt{4 - y}\]
\[\text{This is defined only when}\]
\[4 - y \geq 0\]
\[ \Rightarrow y \leq 4\]
\[X = \text{Range of f} = ( - \infty , 4]\]
So, the answer is (c).
APPEARS IN
RELATED QUESTIONS
Let f: R → R be defined as f(x) = x4. Choose the correct answer.
Let f: R → R be defined as f(x) = 3x. Choose the correct answer.
Classify the following function as injection, surjection or bijection : f : Z → Z given by f(x) = x2
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 3 − 4x
Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|
Let A = {1, 2, 3}. Write all one-one from A to itself.
Give examples of two surjective functions f1 and f2 from Z to Z such that f1 + f2 is not surjective.
Find gof and fog when f : R → R and g : R → R is defined by f(x) = 8x3 and g(x) = x1/3.
Let f : R → R and g : R → R be defined by f(x) = x + 1 and g (x) = x − 1. Show that fog = gof = IR.
Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2x, g(x) = 1/x and h(x) = ex.
Give examples of two functions f : N → N and g : N → N, such that gof is onto but f is not onto.
Find fog and gof if : f (x) = ex g(x) = loge x .
A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).
Which one of the following graphs represents a function?
Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.
Let f : R → R be defined as `f (x) = (2x - 3)/4.` write fo f-1 (1) .
Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)` [NCERT EXEMPLAR]
A function f from the set of natural numbers to integers defined by
`{([n-1]/2," when n is odd" is ),(-n/2,when n is even ) :}`
Let
\[f : R \to R\] be a function defined by
Let \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation
If \[F : [1, \infty ) \to [2, \infty )\] is given by
\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]
Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{ and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]
Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1.
A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.
If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.
Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f
Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.
Consider the set A containing n elements. Then, the total number of injective functions from A onto itself is ______
Let C be the set of complex numbers. Prove that the mapping f: C → R given by f(z) = |z|, ∀ z ∈ C, is neither one-one nor onto.
Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:
f(x) = `x/2`
If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______.
The number of bijective functions from set A to itself when A contains 106 elements is ____________.
Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?
If f; R → R f(x) = 10x + 3 then f–1(x) is:
`x^(log_5x) > 5` implies ______.
Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.
Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as
f(k) = `{{:(k + 1, if k "is odd"),( k, if k "is even"):}`.
Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.
Write the domain and range (principle value branch) of the following functions:
f(x) = tan–1 x.
Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.