Advertisements
Advertisements
Question
Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{ and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]
Options
\[\text{fogoh}\left( x \right) = \frac{\pi}{2}\]
fogoh (x) = π
\[\text{ho f og = hogo f}\]
\[\text{ho f og ≠ hogo f}\]
Solution
(c) \[\text{ho fog = hogo f}\]
\[\text{We have}, \]
\[g\left( x \right) = \left[ x^2 \right] \]
\[ = 0 \left(As\frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\therefore \frac{1}{4} \leq x^2 \leq \frac{1}{2} \right)\]
\[\text{fog}\left( x \right) = f\left( g\left( x \right) \right) = \sin^{- 1} \left( 0 \right)\]
\[ = 0\]
\[\text{hofog}\left( x \right) = h\left( f\left( g\left( x \right) \right) \right) = 2 \times 0 = 0\]
\[\text{And}\]
\[f\left( x \right) = \sin^{- 1} x\]
\[Now, \]
\[for, x \in \left[ \frac{1}{2}, \frac{1}{\sqrt{2}} \right]\]
\[f\left( x \right) \in \left[ \frac{\pi}{6}, \frac{\pi}{4} \right]\]
\[f\left( x \right) \in \left[ 0 . 52, 0 . 78 \right]\]
\[gof\left( x \right) = 0 \left( As, f\left( x \right) \in \left[ 0 . 52, 0 . 78 \right] \right)\]
\[ = 0\]
\[\text{hogof}\left( x \right) = h\left( g\left( f\left( x \right) \right) \right) = 2 \times 0 = 0\]
\[\therefore \text{hofog = hogof} = 0\]
APPEARS IN
RELATED QUESTIONS
Show that the function f in `A=R-{2/3} ` defined as `f(x)=(4x+3)/(6x-4)` is one-one and onto hence find f-1
Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x = 0), (-1, if x < 0):}` is neither one-one nor onto
Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)
Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2
Classify the following function as injection, surjection or bijection :
f : Z → Z, defined by f(x) = x2 + x
Let A = {1, 2, 3}. Write all one-one from A to itself.
Give examples of two surjective functions f1 and f2 from Z to Z such that f1 + f2 is not surjective.
Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.
Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and g(x) = x2 + 5 .
Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + x2 and g(x) = x3
If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).
State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}
Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1
If f : R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1 (5).
If f : Q → Q, g : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.
Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.
Which one of the following graphs represents a function?
Let `f : R - {- 3/5}` → R be a function defined as `f (x) = (2x)/(5x +3).`
f-1 : Range of f → `R -{-3/5}`.
Let f : R → R be defined as `f (x) = (2x - 3)/4.` write fo f-1 (1) .
Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.
If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).
The function f : R → R defined by
`f (x) = 2^x + 2^(|x|)` is
Which of the following functions form Z to itself are bijections?
The function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is
Let \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation
If \[f\left( x \right) = \sin^2 x\] and the composite function \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to
Mark the correct alternative in the following question:
If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is
Mark the correct alternative in the following question:
Let f : R \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\] R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,
Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1.
If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.
If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))
Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.
Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.
The mapping f : N → N is given by f(n) = 1 + n2, n ∈ N when N is the set of natural numbers is ____________.
Let f : R → R, g : R → R be two functions such that f(x) = 2x – 3, g(x) = x3 + 5. The function (fog)-1 (x) is equal to ____________.
If `f : R -> R^+ U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is
Let a function `f: N rightarrow N` be defined by
f(n) = `{:[(2n",", n = 2"," 4"," 6"," 8","......),(n - 1",", n = 3"," 7"," 11"," 15","......),((n + 1)/2",", n = 1"," 5"," 9"," 13","......):}`
then f is ______.