English

Let [X] Denote the Greatest Integer Less than Or Equal to X. If F ( X ) = Sin − 1 X , G ( X ) = [ X 2 ] a N D H ( X ) = 2 X , 1 2 ≤ X ≤ 1 √ 2 (A) Fogoh ( X ) = π 2 (B) Fogoh ( X ) = π - Mathematics

Advertisements
Advertisements

Question

Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 

Options

  • \[\text{fogoh}\left( x \right) = \frac{\pi}{2}\]

  • fogoh (x) = π

     

  •  \[\text{ho f og = hogo f}\]

  • \[\text{ho f og ≠  hogo f}\]

     

MCQ

Solution

(c) \[\text{ho fog = hogo f}\]

\[\text{We have}, \] 
\[g\left( x \right) = \left[ x^2 \right] \] 
\[ = 0 \left(As\frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\therefore \frac{1}{4} \leq x^2 \leq \frac{1}{2} \right)\] 
\[\text{fog}\left( x \right) = f\left( g\left( x \right) \right) = \sin^{- 1} \left( 0 \right)\] 
\[ = 0\] 
\[\text{hofog}\left( x \right) = h\left( f\left( g\left( x \right) \right) \right) = 2 \times 0 = 0\] 

\[\text{And}\] 
\[f\left( x \right) = \sin^{- 1} x\] 
\[Now, \] 
\[for, x \in \left[ \frac{1}{2}, \frac{1}{\sqrt{2}} \right]\] 
\[f\left( x \right) \in \left[ \frac{\pi}{6}, \frac{\pi}{4} \right]\] 
\[f\left( x \right) \in \left[ 0 . 52, 0 . 78 \right]\] 
\[gof\left( x \right) = 0 \left( As, f\left( x \right) \in \left[ 0 . 52, 0 . 78 \right] \right)\] 
\[ = 0\] 
\[\text{hogof}\left( x \right) = h\left( g\left( f\left( x \right) \right) \right) = 2 \times 0 = 0\]

\[\therefore \text{hofog = hogof} = 0\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.6 [Page 79]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.6 | Q 44 | Page 79

RELATED QUESTIONS

Show that the function f in `A=R-{2/3} ` defined as `f(x)=(4x+3)/(6x-4)` is one-one and onto hence find f-1


Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x  = 0), (-1, if x < 0):}`  is neither one-one nor onto


Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Let A = {1, 2, 3}. Write all one-one from A to itself.


Give examples of two surjective functions f1 and f2 from Z to Z such that f1 + f2 is not surjective.


Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.


Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and  g(x) = x2 + 5 .


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = 2x + x2 and  g(x) = x3


 If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).


State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


If f : R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1 (5).


If f : Q → Qg : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.


Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.


Which one of the following graphs represents a function?


Let `f : R - {- 3/5}` → R be a function defined as `f  (x) = (2x)/(5x +3).` 

f-1 : Range of f → `R -{-3/5}`.


Let f : R → R be defined as  `f (x) = (2x - 3)/4.` write fo f-1 (1) .


Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


The function f : R → R defined by

`f (x) = 2^x + 2^(|x|)` is 

 


Which of the following functions form Z to itself are bijections?

 

 

 
 

The  function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is

 


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



If  \[f\left( x \right) = \sin^2 x\] and the composite function   \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Mark the correct alternative in the following question:
Let f :  \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\]  R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,

 


Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.


If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


The mapping f : N → N is given by f(n) = 1 + n2, n ∈ N when N is the set of natural numbers is ____________.


Let f : R → R, g : R → R be two functions such that f(x) = 2x – 3, g(x) = x3 + 5. The function (fog)-1 (x) is equal to ____________.


If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×