English

Show that If F1 And F2 Are One-one Maps From R To R, Then the Product F1 × F2 : R → R Defined by (F1 × F2) (X) = F1 (X) F2 (X) Need Not Be One - One. - Mathematics

Advertisements
Advertisements

Question

Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.

Sum

Solution

We know that f1R → R, given by f1(x) = x, and f2(x) = x are one-one.
Proving f1 is one-one:
Let x and y be two elements in the domain R, such that

f1(x) = f1(y)

x = y
So, f1 is one-one.

Proving f2 is one-one:
Let x and y be two elements in the domain R, such that
f2(x) = f2(y)

⇒ x = y 
So, f2 is one-one.

Proving f1 × f2 is not one-one:
Given:

(f1 × f2(xf1 (x) × f2 (xx × x2

Let x and y be two elements in the domain R, such that

f1 × f2(x(f1 × f2(y)

⇒ x2 = y2

⇒ ± y

So, (f1 × f2) is not one-one.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.1 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.1 | Q 19 | Page 32

RELATED QUESTIONS

Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f : → R defined by f(x) = 3 − 4x


Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.


Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = sin2x + cos2x


If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.


Suppose f1 and f2 are non-zero one-one functions from R to R. Is `f_1 / f^2` necessarily one - one? Justify your answer. Here,`f_1/f_2 : R → R   is   given   by   (f_1/f_2) (x) = (f_1(x))/(f_2 (x))  for all  x in R .`


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.


If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.


Let A and B be two sets, each with a finite number of elements. Assume that there is an injective map from A to B and that there is an injective map from B to A. Prove that there is a bijection from A to B.


Which of the following graphs represents a one-one function?


 If f : R → R be defined by f(x) = x4, write f−1 (1).

If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)}                                                                                                        [NCERT EXEMPLAR]


Let

\[f : R - \left\{ n \right\} \to R\]

\[f\left( x \right) = \frac{x - m}{x - n}, \text{where} \ m \neq n .\] Then,
 

Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



Let

\[A = \left\{ x \in R : x \leq 1 \right\} and f : A \to A\] be defined as

\[f\left( x \right) = x \left( 2 - x \right)\] Then,

\[f^{- 1} \left( x \right)\] is


Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


Let f: R → R be the function defined by f(x) = 4x – 3 ∀ x ∈ R. Then write f–1 


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Which of the following functions from Z into Z are bijections?


The number of bijective functions from set A to itself when A contains 106 elements is ____________.


Let f : R → R be a function defined by f(x) `= ("e"^abs"x" - "e"^-"x")/("e"^"x" + "e"^-"x")` then f(x) is


Let g(x) = x2 – 4x – 5, then ____________.


Let f: R → R defined by f(x) = 3x. Choose the correct answer


If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


A function f: x → y is/are called onto (or surjective) if x under f.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


Which one of the following graphs is a function of x?

Graph A Graph B

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×