Advertisements
Advertisements
Question
If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.
Solution
Injectivity of f :
Let x and y be two elements of domain (R), such that
f (x) = f (y)
⇒ `(e^x - e^(-x))/(e^x -e^(-x)) +1 =(e^y - e^(-y))/(e^y -e^(-y)) + 1`
⇒`(e^x - e^(-x))/(e^x -e^(-x))= (e^y - e^(-y))/(e^y -e^(-y))`
⇒ `(e^-x(e^(2x) -1))/(e^-x(e^(2x)+1)) = (e^-y(e^(2y) -1))/(e^-y(e^(2y)+1)) `
⇒ `(e^(2x) -1)/(e^(2x) +1) = (e^(2y) -1)/(e^(2y) +1)`
⇒ (e2x−1) (e2y+1) = (e2x+1) (e2y−1)
⇒ e2x+2y + e2x−e2y −1= e2x+2y − e2x + e2y − 1
⇒ 2 × e2x =2 × e2y
⇒ e2x = e2y
⇒ 2x = 2y
⇒ x = y
So, f is one-one.
Surjectivity of f:
Let y be in the co-domain (0,2) such that f(x) = y.
`(e^x - e^-x)/(e^x +e^-x) + 1 = y `
⇒ `(e^-x(e^(2x) -1))/(e^-x(e^(2x)+1))+1 = y`
⇒ `(e^-x(e^(2x) -1))/(e^-x(e^(2x)+1)) = y - 1`
⇒ `e^(2x) -1 = (y - 1) (e^(2y) + 1)`
⇒ `e^(2x) -1 = y xx e^(2x) +y - e^(2x) -1`
⇒ `e^(2x) = y xx e^(2x) + y -e^(2x)`
⇒ `e^(2x) (2- y) = y`
⇒ `e^(2x) = y/(2-y)`
⇒ `2x = log_e (y/(2-y))`
⇒ `x = 1/2 log_e (y/(2 -y)) in R` (domain)
So, f is onto.
∴ f is a bijection and, hence, it is invertible.
Finding f -1:
Let f−1 (x) = y ...(1)
⇒ f (y) = x
⇒ `(e^y - e^-y)/(e^y + e^-y )+ 1 = x`
⇒ `(e^-y(e^(2y) -1))/(e^-y(e^(2y)+1)) + 1 = x`
⇒ `(e^-y(e^(2y) -1))/(e^-y(e^(2y)+1)) = x -1`
⇒ e2y −1 = ( x −1) ( e2y + 1 )
⇒ e2y − 1 = x × e2y + x − e2y − 1
⇒ e2y = x × e2y+ x − e2y
⇒ e2y ( 2 − x ) = x
⇒ `e^(2y) = x/(2-x)`
⇒`2y = log_e (x/(2-x))`
⇒`y =1/2 log_e (x/(2-x)) in R` (domain)
⇒`y =1/2 log_e (x/(2-x)) = f^-1 (x)` [from (1)]
` So, f^-1 (x) = 1/2 log_e (x/(2-x))`
APPEARS IN
RELATED QUESTIONS
Check the injectivity and surjectivity of the following function:
f: N → N given by f(x) = x2
Check the injectivity and surjectivity of the following function:
f: Z → Z given by f(x) = x3
Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x = 0), (-1, if x < 0):}` is neither one-one nor onto
Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.
f: R → R defined by f(x) = 1 + x2
Given examples of two functions f: N → N and g: N → N such that gof is onto but f is not onto.
(Hint: Consider f(x) = x + 1 and `g(x) = {(x-1, ifx >1),(1, if x = 1):}`
Classify the following function as injection, surjection or bijection : f : Z → Z given by f(x) = x2
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = sin2x + cos2x
Set of ordered pair of a function? If so, examine whether the mapping is injective or surjective :{(x, y) : x is a person, y is the mother of x}
Let f : N → N be defined by
`f(n) = { (n+ 1, if n is odd),( n-1 , if n is even):}`
Show that f is a bijection.
[CBSE 2012, NCERT]
State with reason whether the following functions have inverse:
h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}
Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.
If A = {1, 2, 3} and B = {a, b}, write the total number of functions from A to B.
If f : R → R is defined by f(x) = x2, find f−1 (−25).
Let f be an invertible real function. Write ( f-1 of ) (1) + ( f-1 of ) (2) +..... +( f-1 of ) (100 )
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.
The function
f : A → B defined by
f (x) = - x2 + 6x - 8 is a bijection if
Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is
\[f : R \to R\] is defined by
\[f\left( x \right) = \frac{e^{x^2} - e^{- x^2}}{e^{x^2 + e^{- x^2}}} is\]
The inverse of the function
\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by
\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is
If \[F : [1, \infty ) \to [2, \infty )\] is given by
\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]
Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1.
Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.
Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto
Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective
Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:
h(x) = x|x|
Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.
Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.
Let f : R → R be defind by f(x) = `1/"x" AA "x" in "R".` Then f is ____________.
The function f: R → R defined as f(x) = x3 is:
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:
Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- Three friends F1, F2, and F3 exercised their voting right in general election-2019, then which of the following is true?
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Ravi wants to know among those relations, how many functions can be formed from B to G?
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible?
If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)
Let f: R → R defined by f(x) = 3x. Choose the correct answer
Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:
If f; R → R f(x) = 10x + 3 then f–1(x) is:
If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n" "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.
If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.