English

If F : R → (0, 2) Defined by `F (X) =(E^X - E^(X))/(E^X +E^(-x))+1`Is Invertible , Find F-1. - Mathematics

Advertisements
Advertisements

Question

If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.

Solution

 

Injectivity of f :
Let x and y be two elements of domain (R), such that

f (x) = f (y)

⇒ `(e^x - e^(-x))/(e^x -e^(-x)) +1 =(e^y - e^(-y))/(e^y -e^(-y)) + 1`

⇒`(e^x - e^(-x))/(e^x -e^(-x))= (e^y - e^(-y))/(e^y -e^(-y))`

⇒ `(e^-x(e^(2x) -1))/(e^-x(e^(2x)+1)) = (e^-y(e^(2y) -1))/(e^-y(e^(2y)+1)) `

⇒ `(e^(2x) -1)/(e^(2x) +1)  = (e^(2y) -1)/(e^(2y) +1)`

⇒ (e2x−1) (e2y+1) = (e2x+1) (e2y−1)

⇒ e2x+2y + e2x−e2y −1= e2x+2y − e2x + e2y − 1

⇒ 2 × e2x =2 × e2y

⇒ e2x = e2y

⇒ 2x = 2y

⇒ x = y

So, f is one-one.

Surjectivity of f:
Let y be in the co-domain (0,2) such that f(x) = y.

`(e^x - e^-x)/(e^x +e^-x) + 1 = y `

⇒ `(e^-x(e^(2x) -1))/(e^-x(e^(2x)+1))+1 = y`

⇒ `(e^-x(e^(2x) -1))/(e^-x(e^(2x)+1)) = y - 1`

⇒ `e^(2x) -1 = (y - 1) (e^(2y) + 1)`

⇒ `e^(2x) -1 = y xx e^(2x) +y - e^(2x) -1`

⇒ `e^(2x) = y xx e^(2x) + y -e^(2x)`

⇒ `e^(2x) (2- y) = y`

⇒ `e^(2x) = y/(2-y)`

⇒ `2x = log_e (y/(2-y))`

⇒ `x = 1/2  log_e (y/(2 -y)) in R` (domain)

So,  f is onto.

∴ f is a bijection and, hence, it is invertible.

Finding f  -1:

Let f−1 (x) = y           ...(1)

⇒ f (y) = x

⇒ `(e^y - e^-y)/(e^y + e^-y )+ 1 = x`

⇒ `(e^-y(e^(2y) -1))/(e^-y(e^(2y)+1)) + 1 = x`

⇒ `(e^-y(e^(2y) -1))/(e^-y(e^(2y)+1)) = x -1`

⇒ e2y −1 = ( x −1) ( e2y + 1 )

⇒ e2y − 1 = x × e2y + x − e2y − 1

⇒ e2y = x × e2y+ x − e2y

⇒ e2y ( 2 − x ) = x

⇒  `e^(2y)  = x/(2-x)`

⇒`2y = log_e  (x/(2-x))`

⇒`y =1/2 log_e  (x/(2-x)) in R`  (domain)

⇒`y =1/2 log_e  (x/(2-x)) = f^-1 (x)`  [from (1)]

` So,   f^-1  (x)  = 1/2  log_e  (x/(2-x))`

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.4 [Page 69]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.4 | Q 18 | Page 69

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x3


Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x  = 0), (-1, if x < 0):}`  is neither one-one nor onto


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f: → R defined by f(x) = 1 + x2


Given examples of two functions fN → N and gN → N such that gof is onto but is not onto.

(Hint: Consider f(x) = x + 1 and `g(x) = {(x-1, ifx >1),(1, if x = 1):}`


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x2


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = sin2x + cos2x


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


Let f : N → N be defined by

`f(n) = { (n+ 1, if n  is  odd),( n-1 , if n  is  even):}`

Show that f is a bijection. 

                      [CBSE 2012, NCERT]


State with reason whether the following functions have inverse:

h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}


Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


If f : R → R is defined by f(x) = x2, find f−1 (−25).


Let f be an invertible real function. Write ( f-1  of ) (1) + ( f-1  of ) (2) +..... +( f-1 of ) (100 )


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.


The function 

f : A → B defined by 

f (x) = - x2 + 6x - 8 is a bijection if 

 

 

 

 


Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is

 


\[f : R \to R\] is defined by

\[f\left( x \right) = \frac{e^{x^2} - e^{- x^2}}{e^{x^2 + e^{- x^2}}} is\]

 


The inverse of the function

\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by

\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is 

 


If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 


Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.


Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


The function f: R → R defined as f(x) = x3 is:


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Three friends F1, F2, and F3 exercised their voting right in general election-2019, then which of the following is true?

An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible?

If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


Let f: R → R defined by f(x) = 3x. Choose the correct answer


Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


If f; R → R f(x) = 10x + 3 then f–1(x) is:


If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n"  "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×