English

Set of Ordered Pairs Functions? If So, Examine Whether the Mapping Is Injective Or Surjective :{(X, Y) : X Is a Person, Y Is the Mother Of X} - Mathematics

Advertisements
Advertisements

Question

Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}

Sum

Solution

 f = {(xy) : x is a person, y is the mother of x}

As, for each element x in domain set, there is a unique related element y in co-domain set.

So, f is the function.

Injection test:
As, y can be mother of two or more persons
So, f is not injective.

Surjection test :

For every mother y defined by (xy), there exists a person x for whom y is mother.
So, f is surjective.
Therefore, f is surjective function.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.1 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.1 | Q 9.1 | Page 32

RELATED QUESTIONS

Show that the function f in `A=R-{2/3} ` defined as `f(x)=(4x+3)/(6x-4)` is one-one and onto hence find f-1


Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.


Let f: R → R be defined as f(x) = 3x. Choose the correct answer.


Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 3), (b, 2), (c, 1)} 


Give an example of a function which is not one-one but onto ?


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 1 + x2


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Give examples of two surjective functions f1 and f2 from Z to Z such that f1 + f2 is not surjective.


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


If f : R → R is given by f(x) = x3, write f−1 (1).


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


Let f : R → R be defined as  `f (x) = (2x - 3)/4.` write fo f-1 (1) .


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = \[\alpha x + \beta\]  then find the values of \[\alpha\] and \[ \beta\] . [NCERT EXEMPLAR]


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



\[f : R \to R \text{given by} f\left( x \right) = x + \sqrt{x^2} \text{ is }\]

 

 


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


Let

\[f : R \to R\]
\[f\left( x \right) = \frac{x^2 - 8}{x^2 + 2}\]
Then,  f is


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.


Let D be the domain of the real valued function f defined by f(x) = `sqrt(25 - x^2)`. Then, write D


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.


Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Raji wants to know the number of functions from A to B. How many number of functions are possible?

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • The function f: R → R defined by f(x) = x − 4 is ____________.

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.

'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:


If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×