Advertisements
Advertisements
Question
Let
Options
one-one but not onto
one-one and onto
onto but not one-one
neither one-one nor onto
Solution
Injectivity:
Let x and y be two elements in the domain (R), such that
\[f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow \frac{x^2 - 8}{x^2 + 2} = \frac{y^2 - 8}{y^2 + 2}\]
\[ \Rightarrow \left( x^2 - 8 \right)\left( y^2 + 2 \right) = \left( x^2 + 2 \right)\left( y^2 - 8 \right)\]
\[ \Rightarrow x^2 y^2 + 2 x^2 - 8 y^2 - 16 = x^2 y^2 - 8 x^2 + 2 y^2 - 16\]
\[ \Rightarrow 10 x^2 = 10 y^2 \]
\[ \Rightarrow x^2 = y^2 \]
\[ \Rightarrow x = \pm y \]
So, f is not one-one .
Surjectivity:
\[ \text{ and} f\left( 1 \right) = \frac{\left( 1 \right)^2 - 8}{\left( 1 \right)^2 + 2} = \frac{1 - 8}{1 + 2} = \frac{- 7}{3}\]
The correct answer is (d).
APPEARS IN
RELATED QUESTIONS
Classify the following function as injection, surjection or bijection :
f : Z → Z, defined by f(x) = x − 5
If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.
Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.
Suppose f1 and f2 are non-zero one-one functions from R to R. Is `f_1 / f^2` necessarily one - one? Justify your answer. Here,`f_1/f_2 : R → R is given by (f_1/f_2) (x) = (f_1(x))/(f_2 (x)) for all x in R .`
Give examples of two functions f : N → Z and g : Z → Z, such that gof is injective but gis not injective.
If f(x) = |x|, prove that fof = f.
Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.
[CBSE 2012, 2014]
Let A = {x &epsis; R | −1 ≤ x ≤ 1} and let f : A → A, g : A → A be two functions defined by f(x) = x2 and g(x) = sin (π x/2). Show that g−1 exists but f−1 does not exist. Also, find g−1.
Which one of the following graphs represents a function?
If f : C → C is defined by f(x) = (x − 2)3, write f−1 (−1).
If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).
Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.
Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.
Write the domain of the real function
`f (x) = sqrtx - [x] .`
If f : {5, 6} → {2, 3} and g : {2, 3} → {5, 6} are given by f = {(5, 2), (6, 3)} and g = {(2, 5), (3, 6)}, then find fog. [NCERT EXEMPLAR]
Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)} [NCERT EXEMPLAR]
Let
\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is
The range of the function
\[f\left( x \right) =^{7 - x} P_{x - 3}\]
Let
\[f : R - \left\{ n \right\} \to R\]
If \[f : R \to R is given by f\left( x \right) = 3x - 5, then f^{- 1} \left( x \right)\]
If \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to
Let
\[f : R \to R\] be given by \[f\left( x \right) = x^2 - 3\] Then, \[f^{- 1}\] is given by
Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1.
If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.
Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.
Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.
Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.
Which of the following functions from Z into Z are bijections?
The number of bijective functions from set A to itself when A contains 106 elements is ____________.
The function f : R → R given by f(x) = x3 – 1 is ____________.
Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then
Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.
Answer the following questions using the above information.
- The function f: Z → Z defined by f(x) = x2 is ____________.
Let f: R → R defined by f(x) = 3x. Choose the correct answer
Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not
Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.
Consider a set containing function A= {cos–1cosx, sin(sin–1x), sinx((sinx)2 – 1), etan{x}, `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}. B, C, D, are subsets of A, such that B contains periodic functions, C contains even functions, D contains odd functions then the value of n(B ∩ C) + n(B ∩ D) is ______ where {.} denotes the fractional part of functions)
Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.
The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.
Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then
Assertion (A): f(x) has a minimum at x = 1.
Reason (R): When `d/dx (f(x)) < 0, ∀ x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀ x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.