English

Let (A) Injective but Not Surjective (B) Surjective but Not Injective (C) Bijective (D) None of These - Mathematics

Advertisements
Advertisements

Question

Let 

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is 

 

Options

  • injective but not surjective

  • surjective but not injective

  • bijective

  • none of these

MCQ

Solution

Injectivity:
Let x and y be any two elements in the domain A.

Case-1: Let x and y be two positive numbers, such that

\[f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow x\left| x \right| = y\left| y \right|\]
\[ \Rightarrow x\left( x \right) = y\left( y \right)\]
\[ \Rightarrow x^2 = y^2 \]
\[ \Rightarrow x = y\]

Case-2: Let x and y be two negative numbers, such that

\[f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow x\left| x \right| = y\left| y \right|\]
\[ \Rightarrow x\left( - x \right) = y\left( - y \right)\]
\[ \Rightarrow - x^2 = - y^2 \]
\[ \Rightarrow x^2 = y^2 \]
\[ \Rightarrow x = y\]

Case-3: Let be positive and y be negative.

\[\text{Then},x \neq y\]
\[ \Rightarrow f\left( x \right) = x\left| x \right| \text{is positive and}\]
\[f\left( y \right) = y\left| y \right| \text{is negative}\]
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\]
\[So, x \neq y\]
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\]

From the 3 cases, we can conclude that  f is one-one.
Surjectivity:
Let y be an element in the co-domain, such that y = f (x)

\[\text{Case}-1: \text{Lety}>0. \text{Then}, 0<y\leq1\]
\[ \Rightarrow y = f\left( x \right) = x\left| x \right| > 0\]
\[ \Rightarrow x > 0\]
\[ \Rightarrow \left| x \right| = x\]
\[f\left( x \right) = y\]
\[ \Rightarrow x\left| x \right| = y\]
\[ \Rightarrow x\left( x \right) = y\]
\[ \Rightarrow x^2 = y\]
\[ \Rightarrow x = \sqrt{y} \in A \left( \text{ We do not get \pm because }x>0 \right)\]
\[\text{Case}-2: \text{Lety}<0. Then, -1\leq y<0\]
\[ \Rightarrow y = f\left( x \right) = x\left| x \right| < 0\]
\[ \Rightarrow x < 0\]
\[ \Rightarrow \left| x \right| = - x\]
\[f\left( x \right) = y\]
\[ \Rightarrow x\left| x \right| = y\]
\[ \Rightarrow x\left( - x \right) = y\]
\[ \Rightarrow - x^2 = y\]
\[ \Rightarrow x^2 = - y\]
\[ \Rightarrow x = \sqrt{-y} \in A \left( \text{ We do not get ± because }x>0 \right)\]

⇒ f is onto.

⇒ f is a bijection.

So, the answer is (c).

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.6 [Page 75]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.6 | Q 7 | Page 75

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x and g(x) = |x| .


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 2x − 3 and  g(x) = 3x − 4 .


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


State with reason whether the following functions have inverse :

g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}


Let A and B be two sets, each with a finite number of elements. Assume that there is an injective map from A to B and that there is an injective map from B to A. Prove that there is a bijection from A to B.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


If \[f : R \to R\] is given by \[f\left( x \right) = x^3 + 3, \text{then} f^{- 1} \left( x \right)\] is equal to

 


Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by \[f\left( x \right) = \frac{x - 2}{x - 3}, \forall x \in A\] Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)


If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

g = {(1, 4), (2, 4), (3, 4)}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

k = {(1,4), (2, 5)}


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.


Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.


Let f : R → R, g : R → R be two functions such that f(x) = 2x – 3, g(x) = x3 + 5. The function (fog)-1 (x) is equal to ____________.


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Three friends F1, F2, and F3 exercised their voting right in general election-2019, then which of the following is true?

An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible?

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: R → R be defined by f(x) = x2 is:

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: {1,2,3,....} → {1,4,9,....} be defined by f(x) = x2 is ____________.

A function f: x → y is said to be one – one (or injective) if:


Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = `sqrt((|[x]| - 2)/(|[x]| - 3)` is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.


Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f: S `rightarrow` S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×