English

Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by f(x)=(x-2x-3). Is f one-one and onto? Justify your answer. - Mathematics

Advertisements
Advertisements

Question

Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.

Sum

Solution

A = R − {3}, B = R − {1}

f: A → B is defined as `f(x) = ((x -2)/(x -3))`

Let x, y ∈ A such that f(x) =  f(y)

`=> (x -2)/(x - 3) = (y - 2)/(y - 3)`

=> (x - 2) (y - 3) = (y -2) (x - 3)

`=> xy - 3x - 2y + 6 = xy - 3y - 2x + 6`

`= > -3x - 2y = -3y -2x`

=> 3x - 2x = 3y - 2y

=>  x = y

∴ f is one - one.

Let y ∈B = R − {1}. Then, y ≠ 1.

The function f is onto if there exists x ∈A such that f(x) = y.

f(x)= y

`=>(x -2)/(x - 3) = y`

`=> x - 2 = xy - 3y`

`=> x(1- y) = -3y + 2`

`=> x  = (2-3y) / (1- y) in A`     [`y != 1`]

Thus, for any y ∈ B, there exists `(2 - 3y)/(1 - y)  in A` such that

`f(2 - 3y)/(1- y)= (((2-3y)/(1-y)) -2)/(((2-3y)/(1-y)) - 3)`

`= (2-3y - 2 + 2y)/(2-3y - 3 + 3y)`

`= (-y)/(-1)`

Hence, function f is one - one and onto.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations and Functions - Exercise 1.2 [Page 11]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.2 | Q 10 | Page 11

RELATED QUESTIONS

Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


If the function `f(x) = sqrt(2x - 3)` is invertible then find its inverse. Hence prove that `(fof^(-1))(x) = x`


Give an example of a function which is not one-one but onto ?


Give an example of a function which is neither one-one nor onto ?


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = `x/(x^2 +1)`


Show that the exponential function f : R → R, given by f(x) = ex, is one-one but not onto. What happens if the co-domain is replaced by`R0^+` (set of all positive real numbers)?


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


Find fog and gof  if : f (x) = x+1, g(x) = `e^x`

.


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.


Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^-1 (x) = (sqrt (x +6)-1)/3 .`


Which of the following graphs represents a one-one function?


If f : R → R is defined by f(x) = x2, write f−1 (25)


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.


Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


Which of the following functions form Z to itself are bijections?

 

 

 
 

Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


If \[g \left( f \left( x \right) \right) = \left| \sin x \right| \text{and} f \left( g \left( x \right) \right) = \left( \sin \sqrt{x} \right)^2 , \text{then}\]

 


Let

\[A = \left\{ x \in R : x \leq 1 \right\} and f : A \to A\] be defined as

\[f\left( x \right) = x \left( 2 - x \right)\] Then,

\[f^{- 1} \left( x \right)\] is


 Let
\[g\left( x \right) = 1 + x - \left[ x \right] \text{and} f\left( x \right) = \begin{cases}- 1, & x < 0 \\ 0, & x = 0, \\ 1, & x > 0\end{cases}\] where [x] denotes the greatest integer less than or equal to x. Then for all \[x, f \left( g \left( x \right) \right)\] is equal to


If \[f : R \to R\] is given by \[f\left( x \right) = x^3 + 3, \text{then} f^{- 1} \left( x \right)\] is equal to

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1


Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible?

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • The function f: R → R defined by f(x) = x − 4 is ____________.

Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.


Let f(x) be a polynomial of degree 3 such that f(k) = `-2/k` for k = 2, 3, 4, 5. Then the value of 52 – 10f(10) is equal to ______.


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.



The given function f : R → R is not ‘onto’ function. Give reason.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×