English

Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} And F : A → B, G : B → C Be Defined As F(X) = 2x + 1 And G(X) = X2 − 2. Express (Gof)−1 And F−1 Og−1 As the Sets of Ordered Pairs and - Mathematics

Advertisements
Advertisements

Question

Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.

Solution

f(x)=2x+1

⇒ f{(1, 2(1)+1), (2, 2(2)+1), (3, 2(3)+1), (4, 2(4)+1)}={(1, 3), (2, 5), (3, 7), (4, 9)}g(x)=x22

⇒ g{(3, 322), (5, 522), (7, 722), (9, 922)}={(3, 7), (5, 23), (7, 47), (9, 79)}

Clearly and g are bijections and, hence, f1BA and g1: CB exist.

So, f1{(3, 1), (5, 2), (7, 3), (9, 4)} 

and g1{(7, 3), (23, 5), (47, 7), (79, 9)}

Now, (f1 o g1CA

f1 o g1={(7, 1), (23, 2), (47, 3), (79, 4)}        ...(1)

Also, AB and → C,

⇒ go→ C, (gof1 CA

So, f1 o g1and (gof)1 have same domains.

(gof)(x)=g (f (x))=g (2x+1)=(2x+1)22

 (gof(x4x24+12

 (gof(x4x241

Then, (gof(1g (f (1)4+4=7,

(gof)(2)=g (f (2))=4+41=23,

(gof)(3)=g (f (3))=4+41=47 and 

(gof)(4)=g (f (4))=4+41=79

So, gof={(1, 7), (2, 23), (3, 47), (4, 79)}

(gof)1={(7, 1), (23, 2), (47, 3), (79, 4)}     ......(2)

From (1) and (2), we get:

 (gof)f1 o g1

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.4 [Page 68]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.4 | Q 4 | Page 68

RELATED QUESTIONS

Prove that the greatest integer function f: → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.


Let f: R → R be defined as f(x) = 3x. Choose the correct answer.


Show that the function f: R → R given by f(x) = x3 is injective.


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 3), (b, 2), (c, 1)} 


Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)


Give an example of a function which is not one-one but onto ?


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 1 + x2


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


Let A = {1, 2, 3}. Write all one-one from A to itself.


Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


If f(x) = |x|, prove that fof = f.


State with reason whether the following functions have inverse :

g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}


State with reason whether the following functions have inverse:

h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


Consider f : R → R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with inverse f−1 of f given by f−1 `(x)= sqrt (x-4)` where R+ is the set of all non-negative real numbers.


If f : R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1 (5).


If f : R → R is defined by f(x) = x2, write f−1 (25)


 If f : R → R be defined by f(x) = x4, write f−1 (1).

If f : R → R is defined by f(x) = 10 x − 7, then write f−1 (x).


Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


The function f : R → R defined by

`f (x) = 2^x + 2^(|x|)` is 

 


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


Let A be a finite set. Then, each injective function from A into itself is not surjective.


If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______.


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


The function f: R → R defined as f(x) = x3 is:


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.

'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:


Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.


Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×