Advertisements
Advertisements
Question
Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → B, g : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.
Solution
f(x)=2x+1
⇒ f= {(1, 2(1)+1), (2, 2(2)+1), (3, 2(3)+1), (4, 2(4)+1)}={(1, 3), (2, 5), (3, 7), (4, 9)}g(x)=x2−2
⇒ g= {(3, 32−2), (5, 52−2), (7, 72−2), (9, 92−2)}={(3, 7), (5, 23), (7, 47), (9, 79)}
Clearly f and g are bijections and, hence, f−1: B→A and g−1: C→B exist.
So, f−1= {(3, 1), (5, 2), (7, 3), (9, 4)}
and g−1= {(7, 3), (23, 5), (47, 7), (79, 9)}
Now, (f−1 o g−1) : C→A
f−1 o g−1={(7, 1), (23, 2), (47, 3), (79, 4)} ...(1)
Also, f : A→B and g : B → C,
⇒ gof : A → C, (gof) −1 : C→A
So, f−1 o g−1and (gof)−1 have same domains.
(gof)(x)=g (f (x))=g (2x+1)=(2x+1)2−2
⇒ (gof) (x) = 4x2+ 4x +1−2
⇒ (gof) (x) = 4x2+ 4x −1
Then, (gof) (1) = g (f (1)) = 4+4−1 =7,
(gof)(2)=g (f (2))=4+4−1=23,
(gof)(3)=g (f (3))=4+4−1=47 and
(gof)(4)=g (f (4))=4+4−1=79
So, gof={(1, 7), (2, 23), (3, 47), (4, 79)}
⇒(gof)−1={(7, 1), (23, 2), (47, 3), (79, 4)} ......(2)
From (1) and (2), we get:
(gof)−1 = f−1 o g−1
APPEARS IN
RELATED QUESTIONS
Prove that the greatest integer function f: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.
Let f: R → R be defined as f(x) = 3x. Choose the correct answer.
Show that the function f: R → R given by f(x) = x3 is injective.
Let S = {a, b, c} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.
F = {(a, 3), (b, 2), (c, 1)}
Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)
Give an example of a function which is not one-one but onto ?
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 1 + x2
Set of ordered pair of a function? If so, examine whether the mapping is injective or surjective :{(x, y) : x is a person, y is the mother of x}
Let A = {1, 2, 3}. Write all one-one from A to itself.
Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.
Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.
Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.
If f(x) = |x|, prove that fof = f.
State with reason whether the following functions have inverse :
g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}
State with reason whether the following functions have inverse:
h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}
Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1
Consider f : R → R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with inverse f−1 of f given by f−1 `(x)= sqrt (x-4)` where R+ is the set of all non-negative real numbers.
If f : R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1 (5).
If f : R → R is defined by f(x) = x2, write f−1 (25)
If f : R → R is defined by f(x) = 10 x − 7, then write f−1 (x).
Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]
Write the domain of the real function
`f (x) = 1/(sqrt([x] - x)`.
The function f : R → R defined by
`f (x) = 2^x + 2^(|x|)` is
Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.
Let A be a finite set. Then, each injective function from A into itself is not surjective.
If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______.
Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.
The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is
The function f: R → R defined as f(x) = x3 is:
Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then
Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.
Answer the following questions using the above information.
- Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.
'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:
Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.
Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.
Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then
Assertion (A): f(x) has a minimum at x = 1.
Reason (R): When `d/dx (f(x)) < 0, ∀ x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀ x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.
Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.