English

State with Reasons Whether the Following Functions Have Inverse : G : {5, 6, 7, 8} → {1, 2, 3, 4} With G = {(5, 4), (6, 3), (7, 4), (8, 2)} - Mathematics

Advertisements
Advertisements

Question

State with reason whether the following functions have inverse :

g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}

Solution

 g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}
(5) = (7) = 4

⇒ f is not one-one.

⇒ f is not a bijection.
So, f does not have an inverse.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.4 [Page 68]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.4 | Q 1.2 | Page 68

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Given examples of two functions fN → N and gN → N such that gof is onto but is not onto.

(Hint: Consider f(x) = x + 1 and `g(x) = {(x-1, ifx >1),(1, if x = 1):}`


If the function `f(x) = sqrt(2x - 3)` is invertible then find its inverse. Hence prove that `(fof^(-1))(x) = x`


Give an example of a function which is not one-one but onto ?


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = `x/(x^2 +1)`


Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2 


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


   if `f (x) = sqrt(1-x)` and g(x) = `log_e` x are two real functions, then describe functions fog and gof.


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


Let

f : R → R be given by

\[f\left( x \right) = \left[ x^2 \right] + \left[ x + 1 \right] - 3\]

where [x] denotes the greatest integer less than or equal to x. Then, f(x) is
 


(d) one-one and onto


Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is

 


The function

\[f : R \to R\] defined by\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)\]

(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto


Let

\[f : R - \left\{ n \right\} \to R\]

\[f\left( x \right) = \frac{x - m}{x - n}, \text{where} \ m \neq n .\] Then,
 

Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


The inverse of the function

\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by

\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is 

 


Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 


Mark the correct alternative in the following question:
Let f : R→ R be defined as, f(x) =  \[\begin{cases}2x, if x > 3 \\ x^2 , if 1 < x \leq 3 \\ 3x, if x \leq 1\end{cases}\] 

Then, find f( \[-\]1) + f(2) + f(4)

 


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


Which of the following functions from Z into Z are bijections?


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


The mapping f : N → N is given by f(n) = 1 + n2, n ∈ N when N is the set of natural numbers is ____________.


The function f: R → R defined as f(x) = x3 is:


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if  "n is even"):}` Is the function injective? Justify your answer.


Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = `sqrt((|[x]| - 2)/(|[x]| - 3)` is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.


If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.


Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.

(Note P(x, y) is lattice point if x, y ∈ I)

(where [.] denotes greatest integer function)


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


For x ∈ R, x ≠ 0, let f0(x) = `1/(1 - x)` and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of `f_100(3) + f_1(2/3) + f_2(3/2)` is equal to ______.


If f : R `rightarrow` R is defined by `f(x) = (2x - 7)/4`, show that f(x) is one-one and onto.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×