English

Let F : R − { N } → R F ( X ) = X − M X − N , W H E R E M ≠ N . (A) F is One-one onto (B) F is One-one into (C) F is Many One onto (D) F is Many One into - Mathematics

Advertisements
Advertisements

Question

Let

\[f : R - \left\{ n \right\} \to R\]

\[f\left( x \right) = \frac{x - m}{x - n}, \text{where} \ m \neq n .\] Then,
 

Options

  •  f is one-one onto

  •  f is one-one into

  •  f is many one onto

  • f is many one into

MCQ

Solution

Injectivity:
Let x and be two elements in the domain R-{n}, such that

\[f\left( x \right) = f\left( y \right)\] 
\[ \Rightarrow \frac{x - m}{x - n} = \frac{y - m}{y - n}\] 
\[ \Rightarrow \left( x - m \right)\left( y - n \right) = \left( x - n \right)\left( y - m \right)\] 
\[ \Rightarrow xy - nx - my + mn = xy - mx - ny + mn\] 
\[ \Rightarrow \left( m - n \right)x = \left( m - n \right)y\] 
\[ \Rightarrow x = y\]

So, f is one-one.

Surjectivity:
Let y be an element in the co domain R, such that

\[f\left( x \right) = y\] 
\[ \Rightarrow \frac{x - m}{x - n} = y\] 
\[ \Rightarrow x - m = xy - ny\] 
\[ \Rightarrow ny - m = xy - x\] 
\[ \Rightarrow ny - m = x\left( y - 1 \right)\] 
\[ \Rightarrow x = \frac{ny - m}{y - 1}, \text{which is not defined for } y=1\] 
\[So, 1 \in R\left( co domain \right)\text{has no pre image in }R-\left\{ n \right\}\]

\[\Rightarrow\]  is not onto

Thus, the answer is (b) .

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.6 [Page 77]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.6 | Q 22 | Page 77

RELATED QUESTIONS

Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f : → R defined by f(x) = 3 − 4x


Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Let f: R → R be defined as f(x) = 3x. Choose the correct answer.


If the function `f(x) = sqrt(2x - 3)` is invertible then find its inverse. Hence prove that `(fof^(-1))(x) = x`


Give an example of a function which is neither one-one nor onto ?


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1


If f : R → R be the function defined by f(x) = 4x3 + 7, show that f is a bijection.


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 8 and g(x) = 3x3 + 1 .


Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


If f : C → C is defined by f(x) = x4, write f−1 (1).


Let f : R → Rg : R → R be two functions defined by f(x) = x2 + x + 1 and g(x) = 1 − x2. Write fog (−2).


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



The function

\[f : R \to R\] defined by\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)\]

(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto


If the function

\[f : R \to R\]  be such that

\[f\left( x \right) = x - \left[ x \right]\] where [x] denotes the greatest integer less than or equal to x, then \[f^{- 1} \left( x \right)\]

 


Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by \[f\left( x \right) = \frac{x - 2}{x - 3}, \forall x \in A\] Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)


A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is injective. Then both f and g are injective functions.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.

If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


A function f: x → y is/are called onto (or surjective) if x under f.


Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.


Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Which one of the following graphs is a function of x?

Graph A Graph B

The trigonometric equation tan–1x = 3tan–1 a has solution for ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×